Skip to main content
Log in

Visible-Light-Induced Bactericidal Activity of Vanadium-Pentoxide (V2O5)-Loaded TiO2 Nanoparticles

  • Original Research
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The bactericidal activity of TiO2 nanoparticles under visible light is very important in regards to its practical applications. In this paper, we synthesized vanadium-pentoxide-loaded TiO2 nanoparticles (V2O5–TiO2) using a chemical vapor condensation method, followed by the impregnation method, and characterized its physicochemical properties through X-ray diffraction patterning, X-ray photoelectron spectroscopy analysis, Raman spectra analysis, and Fourier transform infrared analysis. In addition, the antibacterial activity of V2O5–TiO2 nanoparticles against E. coli was evaluated and compared with pure TiO2 nanoparticles. In these experiments, the population of E. coli was shown to be significantly reduced by V2O5–TiO2 nanoparticles under illumination with fluorescent light, whereas pure TiO2 nanoparticles showed about 3.3-fold lower antibacterial activity than the V2O5–TiO2 nanoparticles. This result was most likely due to the change in surface conditions of the TiO2 nanoparticles, which was due to the loading of vanadium pentoxide on the TiO2 nanoparticles. Furthermore, both photocatalysts showed similar antibacterial activity under UV-A (352 nm) irradiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. McDonnell, G., & Russell, A. D. (1999). Antiseptics and disinfectants: activity, action, and resistance. Clinical Microbiology Reviews, 12, 147–179.

    CAS  Google Scholar 

  2. Kim, T. N., Feng, Q. L., Kim, J. O., Wu, J., Wang, H., Chen, G. C., & Cui, F. Z. (1998). Antimicrobial effects of metal ions (Ag+, Cu2+, Zn2+) in hydroxyapatite. Journal Materials Science: Materials Medicine, 9, 129–134.

    Article  Google Scholar 

  3. Maness, P., Smolinski, S., Blake, D. M., Huang, Z., Wolfrum, E. J., & Jacoby, W. A. (1999). Bactericidal activity of photocatalytic TiO2 reaction: toward an understanding of its killing mechanism. Applied Environmental Microbial, 65, 4094–4098.

    CAS  Google Scholar 

  4. Kikuchi, Y., Sunada, K., Iyoda, T., Hashimoto, K., & Fujishima, A. (1997). Photocatalytic bactericidal effect of TiO2 thin films: dynamic view of the active oxygen species responsible for the effect. Journal Photochemistry Photobiology A: Chemistry, 106, 51–56.

    Article  CAS  Google Scholar 

  5. Huang, Z., Maness, P. C., Blake, D. M., Wolfrum, E. J., Smolinski, S. L., & Jacoby, W. A. (1999). Bactericidal mode of titanium dioxide photocatalysis. Journal Photochemistry Photobiology A: Chemistry, 130, 163–170.

    Article  Google Scholar 

  6. Wei, C., Lin, W., Zainal, N. E., Williams, K., Zhu, A. P., Kruzic, R. L., Smith, K., & Rajeshwar, K. (1994). Bactericidal activity of TiO2 photocatalyst in aqueous media: Toward a solar assisted water disinfection system. Environmental Science and Technology, 28, 934–938.

    Article  CAS  Google Scholar 

  7. Rincón, G., & Pulgarin, C. (2003). Photocatalytical inactivation of E. coli: effect of (continuous–intermittent) light intensity and of (suspended-fixed) TiO2 concentration. Applied Catalysis B: Environmental, 44, 263–284.

    Article  Google Scholar 

  8. Dunlop, P. S. M., Byrne, J. A., Manga, N., & Eggins, B. R. (2002). The photocatalytic removal of bacterial pollutants from drinking water. Journal Photochemistry Photobiology A: Chemistry, 148, 355–363.

    Article  CAS  Google Scholar 

  9. Huang, N., Xiao, Z., Huang, D., & Yuan, C. (1998). Photochemical disinfection of Escherichia coli with a TiO2 colloid solution and a self-assembled TiO2 thin film. Supramolecular Science, 5, 559–564.

    Article  CAS  Google Scholar 

  10. Anpo, M., & Takeuchi, M. (2003). The design and development of highly reactive titanium oxide photocatalysts operating under visible light irradiation. Journal of Catalysis, 216, 505–516.

    Article  CAS  Google Scholar 

  11. Caballero, L., Whitehead, K. A., Allen, N. S., & Verran, J. (2009). Inactivation of Escherichia coli on immobilized TiO2 using fluorescent light. Journal Photochemistry Photobiology A: Chemistry, 202, 92–98.

    Article  CAS  Google Scholar 

  12. Ashkarran, A. A. (2011). Antibacterial properties of silver-doped TiO2 nanoparticles under solar simulated light. Journal Theory Applied Physics, 4–4, 1–8.

    Google Scholar 

  13. Shieh, K., Li, M., Lee, Y., Sheu, S., Liu, Y., & Wang, Y. (2006). Antibacterial performance of photocatalyst thin film fabricated by defection effect in visible light. Nanomedicine, 2, 121–126.

    Article  CAS  Google Scholar 

  14. Wang, D., Duan, Y., Luo, Q., Li, X., An, J., Bao, L., & Shi, L. (2012). Novel preparation method for a new visible light photocatalyst: mesoporous TiO2 supported Ag/AgBr. Journal of Materials Chemistry, 22, 4847–4854.

    Article  CAS  Google Scholar 

  15. Wong, M., Chu, W., Sun, D., Huang, H., Chen, J., Tsai, P., Lin, N., Yu, M., Hsu, S., Wang, S., & Chang, H. (2006). Visible-light-induced bactericidal activity of a nitrogen-doped titanium photocatalyst against human pathogens. Applied Environmental Microbiology, 72, 6111–6116.

    Article  CAS  Google Scholar 

  16. Paul, T., Miller, P., & Strathmann, T. (2007). Visible-light-mediated TiO2 photocatalysis of fluoroquinolone antibacterial agents. Environmental Science and Technology, 41, 4720–4727.

    Article  CAS  Google Scholar 

  17. Akhavan, O. (2009). Lasting antibacterial activities of Ag–TiO2/Ag/a-TiO2 nanocomposite thin film photocatalysts under solar light irradiation. Journal Colloid Interface Science, 336, 117–124.

    Article  CAS  Google Scholar 

  18. Akhavan, O., Azimirad, R., Safa, S., & Larijani, M. (2010). Visible light photo-induced antibacterial activity of CNT-doped TiO2 thin films with various CNT contents. Journal of Materials Chemistry, 20, 7386–7392.

    Article  CAS  Google Scholar 

  19. Akhavan, O., Abdolahad, M., Abdi, Y., & Mohajerzadeh, S. (2009). Synthesis of titania/carbon nanotube heterojunction arrays for photoinactivation of E. coli in visible light irradiation. Carbon, 47, 3280–3287.

    Article  CAS  Google Scholar 

  20. Chin, S., Park, E., Kim, M., & Jurng, J. (2010). Photocatalytic degradation of methylene blue with TiO2 nanoparticles prepared by a thermal decomposition process. Powder Technology, 201, 171–176.

    Article  CAS  Google Scholar 

  21. Spurr, R. A., & Myers, H. (1957). Spectrophotometric determination of copper in titanium. Analytical Chemistry, 29, 750–754.

    Article  Google Scholar 

  22. Akurati, K. K., Vital, A., Fortunato, G., Hany, R., Nueesch, F., & Graule, T. (2007). Flame synthesis of TiO2 nanoparticles with high photocatalytic activity. Solid State Sciences, 9, 247–257.

    Article  CAS  Google Scholar 

  23. Djerad, S., Tifouti, L., Crocoll, M., & Weisweiler, M. (2004). Effect of vanadia and tungsten loadings on the physical and chemical characteristics of V2O5–WO3/TiO2 catalysts. Journal Molecular Catalysis A: Chemistry, 208, 257–265.

    Article  CAS  Google Scholar 

  24. Ohsaka, T., Izumi, F., & Fujiki, Y. (1978). Raman spectrum of anatase, TiO2. Journal of Raman Specroscopy, 7, 321–324.

    Article  Google Scholar 

  25. Hyun, C. C., Young, M. J., & Seung, B. K. (2005). Size effects in the Raman spectra of TiO2 nanoparticles. Vibrational Spectroscopy, 37, 33–38.

    Article  Google Scholar 

  26. Kuo, C., Tseng, Y., Huang, C., & Li, Y. (2007). Carbon-containing nano-titania prepared by chemical vapor deposition and its visible-light-responsive photocatalytic activity. Journal Molecular Catalysis A: Chemistry, 270, 93–100.

    Article  CAS  Google Scholar 

  27. Jing, L. Q., Fu, H. G., Wang, B. Q., Wang, D. J., Xin, B. F., Li, S. D., & Sun, J. Z. (2006). Effects of Sn dopant on the photo induced charge property and photocatalytic activity of TiO2 nanoparticles. Applied Catalysis B: Environmental, 62, 282–291.

    Article  CAS  Google Scholar 

  28. Ding, Z., Lu, G. Q., & Greenfield, P. F. (2000). Role of the crystallite phase of TiO2 in heterogeneous photocatalysis for phenol oxidation in water. The Journal of Physical Chemistry. B, 104, 4815–4820.

    Article  CAS  Google Scholar 

  29. Sigaev, V. N., Pernice, P., Aronne, A., Akimova, O. V., Stefanovich, S. Y., & Scaglione, A. (1990). Surface studies of TiO2–SiO2 glasses by X-ray photoelectron spectroscopy. Journal of Non-Crystalline Solids, 126, 202–208.

    Article  Google Scholar 

  30. Qin, X., Jing, L., Tian, G., Qu, Y., & Feng, Y. (2009). Enhanced photocatalytic activity for degrading Rhodamine B solution of commercial Degussa P25 TiO2 and its mechanisms. Journal of Hazardous Materials, 172, 1168–1174.

    Article  CAS  Google Scholar 

  31. Chin, S., Park, E., Kim, M., Bae, G., & Jurng, J. (2012). Synthesis and visible light photocatalytic activity of transition metal oxide (V2O5) loading on TiO2 via a chemical vapor condensation method. Materials Letters, 75, 57–60.

    Article  CAS  Google Scholar 

  32. Kim, Y. S., Linh, L. T., Park, E., Chin, S., Bae, G., & Jurng, J. (2012). Antibacterial performance of TiO2 ultrafine nanopowder synthesized by a chemical vapor condensation method: effect of synthesis temperature and precursor vapor concentration. Powder Technology, 215–216, 195–199.

    Article  Google Scholar 

Download references

Acknowledgments

This work has been supported by the Ministry of Environment (192-091-001) and the Ministry of Education, Science and Technology (2011K000750).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jongsoo Jurng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, Y.S., Song, M.Y., Park, E.S. et al. Visible-Light-Induced Bactericidal Activity of Vanadium-Pentoxide (V2O5)-Loaded TiO2 Nanoparticles. Appl Biochem Biotechnol 168, 1143–1152 (2012). https://doi.org/10.1007/s12010-012-9847-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-012-9847-9

Keywords

Navigation