Skip to main content
Log in

Production of Acid-Stable and High-Maltose-Forming α-Amylase of Bacillus acidicola by Solid-State Fermentation and Immobilized Cells and Its Applicability in Baking

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Among matrices used for immobilizing Bacillus acidicola cells [calcium alginate, chitosan + alginate, scotch brite, and polyurethane foam (PUF)], α-amylase production was highest by PUF-immobilized cells (9.1 U ml−1), which is higher than free cells (7.2 U ml−1). The PUF-immobilized cells could be reused over seven cycles with sustained α-amylase production. When three variables (moisture, starch, and ammonium sulfate), which significantly affected enzyme production in solid-state fermentation (SSF), were optimized using response surface methodology, 5.6-fold enhancement in enzyme production was attained. The enzyme production in SSF is 3.8-fold higher than that in submerged fermentation. The bread made by supplementing dough with α-amylase of B. acidicola scored better than those with the xylanase of Bacillus halodurans and thermostable α-amylase of Geobacillus thermoleovorans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Furusaki, S., & Seki, M. (1992). Advances in Biochemical Engineering/Biotechnology, 46, 161–185.

    Article  CAS  Google Scholar 

  2. Shinmyo, A., Kimura, H., & Okada, H. (1982). Journal of Applied Microbiology & Biotechnology, 14, 7–12. doi:10.1007/BF00507996.

    Article  CAS  Google Scholar 

  3. Koshcheyenko, K. A., Turkina, M. V., & Skryabin, G. K. (1983). Enzyme & Microbial Technology, 5, 14–21. doi:10.1016/0141-0229(83)90057-1.

    Article  CAS  Google Scholar 

  4. Abdel-Naby, M. A., El-Refai, H. A., & Abdel-Fattah, A. F. (2011). Journal of Applied Microbiology, 11, 1129–1137.

    Article  Google Scholar 

  5. Jamuna, R., & Ramakrishna, S. V. (1992). Enzyme & Microbial Technology, 14, 36–41.

    Article  CAS  Google Scholar 

  6. Dobreva, E., Ivanova, V., Tonkova, A., & Radulova, E. (1996). Process Biochemistry, 31, 229–234. doi:10.1016/0032-9592(95)00052-6.

    Article  CAS  Google Scholar 

  7. Brodelius, R., & Vandamme, E. J. (1987). In H. J. Rehm & G. Reed (Eds.), Biotechnology Vol 7a (pp. 653–684). Weinheim: VCH.

    Google Scholar 

  8. Tanaka, T., Nishida, J., Mitani, K., Ogawa, S., Yazaki, Y., & Hirai, H. (1994). Journal of Biological Chemistry, 269, 24020–24026.

    CAS  Google Scholar 

  9. Kapoor, M., Beg, Q. K., Bhushan, B., Dadhich, K. S., & Hoondal, G. S. (2000). Process Biochemistry, 36, 467–473.

    Article  CAS  Google Scholar 

  10. Ghosh, M., & Nanda, G. (1991). Biotechnology Letters, 13, 807–808.

    Article  CAS  Google Scholar 

  11. Beg, Q. K., Bhushan, B., Kapoor, M., & Andondal, G. S. (2000). Journal of Industrial Microbiology & Biotechnology, 24, 396–402.

    Article  CAS  Google Scholar 

  12. Rosés, P. R., & Guerra, N. P. (2009). World Journal of Microbiology & Biotechnology, 25, 1929–1939.

    Article  Google Scholar 

  13. Gangadharan, D., Sivaramakrishnan, S., Nampoothiri, K. M., & Pandey, A. (2006). Food Technology & Biotechnology, 44, 269–274.

    CAS  Google Scholar 

  14. Gangadharan, D., Sivaramakrishnan, S., Naampoothiri, M. K., Sukumaran, R. K., & Pandey, A. (2008). Bioresource Technology, 99, 4597–4602.

    Article  CAS  Google Scholar 

  15. Fogarty, W. M., Collins, B. S., Doyle, E. M., & Kelly, C. T. (1993). Journal of Industrial Microbiology, 11, 199–204.

    Article  CAS  Google Scholar 

  16. McMahon, H. E. M., Kelly, C. T., & Fogarty, W. M. (1999). Biotechnology Letters, 21, 23–26.

    Article  CAS  Google Scholar 

  17. Sajedi, R. H., Naderi-Mahesh, H., Khajeh, K., Ahmadvand, R., Ranjbar, B. A., Asoodeh, A., et al. (2005). Enzyme & Microbial Technology, 36, 666–671.

    Article  CAS  Google Scholar 

  18. Liu, X. D., & Xu, Y. (2008). Bioresource Technology, 99, 4315–4320.

    Article  CAS  Google Scholar 

  19. Kumar, P., & Satyanarayana, T. (2008). In A. Koutinas, A. Pandey, & C. Larroche (Eds.), Bioprocesses in food industry (pp. 132–146). New Delhi: Asiatech Publishers.

    Google Scholar 

  20. Sharma, A., & Satyanarayana, T. (2010). Biotechnology Letters, 32, 1503–1507.

    Article  CAS  Google Scholar 

  21. Sharma, A., & Satyanarayana, T. (2011). Journal of Bioscience & Bioengineering, 111, 550–553.

    Article  CAS  Google Scholar 

  22. Archana, A., & Satyanarayana, T. (1997). Enzyme & Microbial Technology, 21, 12–17.

    Article  CAS  Google Scholar 

  23. Miller, G. L. (1959). Analytical Chemistry, 31, 426–428.

    Article  CAS  Google Scholar 

  24. Quek, E., Ting, Y.-P., & Tan, H. M. (2006). Bioresource Technology, 97, 32–38.

    Article  CAS  Google Scholar 

  25. Yamaguchi, T., Ishida, M., & Suzuki, T. (1999). Process Biochemistry, 34, 167–171.

    Article  CAS  Google Scholar 

  26. Hashemi, M., Razavi, S. H., Shojaosadati, S. A., Mousavi, S. M., Khajeh, K., & Safari, M. (2010). Journal of Bioscience & Bioengineering, 110, 333–337.

    Article  CAS  Google Scholar 

  27. Jones, A., Lamsa, M., Frandsen, T. P., Spendler, T., Harris, P., Sloma, A., et al. (2008). Journal of Biotechnology, 134, 325–333.

    Article  CAS  Google Scholar 

  28. Oort, M. V. (2010). In R. J. Whitehurst & M. V. Oort (Eds.), Enzymes in food technology (pp. 103–143). USA: Wiley-Blackwell.

    Google Scholar 

  29. Martin, M. L., & Hoseney, R. C. (1991). Cereal chemistry, 68, 503–507.

    CAS  Google Scholar 

  30. Gerrard, J. A., Every, D., Sutton, K. H., & Gilpin, M. J. (1997). Journal of Cereal Science, 26, 201–209.

    Article  CAS  Google Scholar 

  31. Kamaliya, M. K., & Kamaliya, K. B. (2001). In M. K. Kamaliya (Ed.), Baking: science and industry, volume I and II (pp. 1–695). Calcutta: Anand Publishers.

    Google Scholar 

  32. Van Dam, H. W., & Hille, J. D. R. (1992). Cereal Foods World, 37, 245–252.

    Google Scholar 

  33. Martinez-Anaya, M. A., & Jimenez, T. (1998). Zeitschrift fur Lebensmittel Untersuchung und Forschung A, 206, 134–142.

    Article  CAS  Google Scholar 

  34. Poutanen, K. (1997). Trends in Food Science & Technology, 8, 300–306.

    Article  Google Scholar 

Download references

Acknowledgments

Authors gratefully acknowledge financial assistance from the Ministry of Environment and Forests (MoEF) and Council of Scientific and Industrial Research (CSIR), Government of India, New Delhi, during the course of this investigation. Thanks are also due to Mr. Vijay Kumar Gupta (Tushar Nutritive Food Industry, New Delhi, India) for extending facilities to test the applicability of the enzymes in bread making and evaluating the quality of bread, and Mr. Vikash Kumar for providing xylanase of Bacillus halodurans.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Satyanarayana.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sharma, A., Satyanarayana, T. Production of Acid-Stable and High-Maltose-Forming α-Amylase of Bacillus acidicola by Solid-State Fermentation and Immobilized Cells and Its Applicability in Baking. Appl Biochem Biotechnol 168, 1025–1034 (2012). https://doi.org/10.1007/s12010-012-9838-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-012-9838-x

Keywords

Navigation