Skip to main content
Log in

A Novel Alkaliphilic Xylanase from the Newly Isolated Mesophilic Bacillus sp. MX47: Production, Purification, and Characterization

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

A newly isolated bacterial strain, Bacillus sp. MX47, was actively producing extracellular xylanase only in xylan-containing medium. The xylanase was purified from the culture broth by two chromatographic steps. The xylanase had an apparent molecular weight of 26.4 kDa with an NH2-terminal sequence (Gln-Gly-Gly-Asn-Phe) distinct from that of reported proteins, implying it is a novel enzyme. The optimum pH and temperature for xylanase activity were 8.0 and 40 °C, respectively. The enzyme activity was severely inhibited by many divalent metal ions and EDTA at 5 mM. The xylanase was highly specific to beechwood and oat spelt xylan, however, not active on carboxymethyl cellulose (CMC), avicel, pectin, and starch. Analysis of the xylan hydrolysis products by Bacillus sp. MX47 xylanase indicated that it is an endo-β-1,4-xylanase. It hydrolyzed xylan to xylobiose as the end product. The K m and V max values toward beechwood xylan were 3.24 mg ml−1 and 58.21 μmol min−1 mg−1 protein, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Altschul, S. F., Madden, T. L., Schaffer, A. A., Zhang, J., Zhang, A., Miller, W., & Lipman, D. J. (1997). Nucleic Acids Research, 25, 3389–3402.

    Article  CAS  Google Scholar 

  2. Bajpai, P. (1997). Advances in Applied Microbiology, 43, 141–194.

    Article  CAS  Google Scholar 

  3. Basu, S., Roy, A., Ghosh, A., Bera, A., Chattopadhyay, D., & Chakrabarti, K. (2011). Biodegradation, 22, 153–161.

    Article  CAS  Google Scholar 

  4. Bernier, R., Desrochers, M., Jurasek, L., & Paice, M. G. (1983). Applied and Environmental Microbiology, 46, 511–514.

    CAS  Google Scholar 

  5. Bustos-Jaimes, I., Mora-Lugo, R., Calcagno, M. L., & Farrés, A. (2010). Biochimica et Biophysica Acta, 1804, 2222–2227.

    Article  CAS  Google Scholar 

  6. Chun, J., Lee, J. H., Jung, Y. Y., Kim, M. J., Kim, S. I., Kim, B. K., & Lim, Y. W. (2007). International Journal of Systematic Evolution and Microbiololgy, 57, 2259–2261.

    Article  CAS  Google Scholar 

  7. Collins, T., Gerday, C., & Feller, G. (2005). FEMS Microbiology Reviews, 29, 3–23.

    Article  CAS  Google Scholar 

  8. Felsenstein, J. (1993). PHYLIP (phylogeny inference package), version 3.5c. Distributed by the author. Seattle: Department of Genome Sciences, University of Washington.

    Google Scholar 

  9. Galkiewicz, J. P., & Kellogg, C. A. (2008). Applied and Environmental Microbiology, 74, 7828–7831.

    Article  CAS  Google Scholar 

  10. Gallardo, O., Diaz, P., & Pastor, F. I. (2004). Current Microbiology, 48, 276–279.

    Article  CAS  Google Scholar 

  11. Ghasemi, S., Ahmadian, G., Sadeghi, M., Zeigler, D. R., Rahimian, H., Ghandili, S., Naghibzadeh, N., & Dehestani, A. (2011). Enzyme and Microbial Technology, 48, 225–231.

    Article  CAS  Google Scholar 

  12. Hall, T. A. (1999). Nucleic Acids Symposium Series, 41, 95–98.

    CAS  Google Scholar 

  13. Ibrahim, K. S., Muniyandi, J., & Karutha, P. S. (2011). Journal of Microbiology and Biotechnology, 21, 20–27.

    Article  CAS  Google Scholar 

  14. Kamble, R. D., & Jadhav, A. R. (2012). International Journal of Microbiology. doi:10.1155/2012/683193.

  15. Kimura, M. (1983). The neutral theory of molecular evolution. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  16. Kluge, A. G., & Farris, F. S. (1969). Systematic Zoology, 18, 1–32.

    Article  Google Scholar 

  17. Knight, B. C., & Proom, H. (1950). Journal of General Microbiology, 4, 508–538.

    Article  CAS  Google Scholar 

  18. Laemmli, U. K. (1970). Nature, 30, 545–550.

    Google Scholar 

  19. Lineweaver, H., & Burk, D. (1934). Journal of the American Chemistry Society, 56, 658–666.

    Article  CAS  Google Scholar 

  20. Miller, G. L. (1959). Anaytical Biochemistry, 13, 426–428.

    Google Scholar 

  21. Nagar, S., Gupta, V. K., Kumar, D., Kumar, L., & Kuhad, R. C. (2010). Journal of Industrial Microbiology and Biotechnology, 37, 71–83.

    Article  CAS  Google Scholar 

  22. Ratanakhanokchaim, K., Kyu, K. L., & Tanticharoen, M. (1999). Applied and Environmental Microbiology, 65, 694–697.

    Google Scholar 

  23. Sa-Pereira, P., Costa-Ferreira, M., & Aires-Barros, M. R. (2002). Journal of Biotechnology, 94, 265–275.

    Article  CAS  Google Scholar 

  24. Saitou, N., & Nei, M. (1987). Molecular Biology and Evolution, 4, 406–425.

    CAS  Google Scholar 

  25. Satomi, M., La Duc, M. T., & Venkateswaran, K. (2006). International Journal of Systematic and Evolutionary Microbiology, 56, 1735–1740.

    Article  CAS  Google Scholar 

  26. Segel, I. H. (1976). Enzyme kinetics. In Biochemical calculations. How to solve mathematical problems in general biochemistry (2nd ed., pp. 214–229). New York: John Wiley and Sons.

    Google Scholar 

  27. Shivaji, S., Chaturvedi, P., Suresh, K., Reddy, G. S. N., Dutt, C. B. S., Wainwright, M., Narlikar, J. V., & Bhargava, P. M. (2006). International Journal of Systematic and Evolutionary Microbiology, 56, 1465–1473.

    Article  CAS  Google Scholar 

  28. Su, F., Hua, D., Zhang, Z., Wang, X., Tang, H., Tao, F., Tai, C., Wu, Q., Wu, G., & Xu, P. (2011). Journal of Bacteriology, 193, 6400–6401.

    Article  CAS  Google Scholar 

  29. Subramaniyan, S. (2012). Applied Biochemistry and Biotechnology, 166, 1831–1842.

    Article  CAS  Google Scholar 

  30. Thomson, J. D., Higgins, D. G., & Gibson, T. J. (1994). Nucleic Acids Research, 22, 4673–4680.

    Article  Google Scholar 

  31. Wang, J., Zhang, W. W., Liu, J. N., Cao, Y. L., Bai, X. T., Gong, Y. S., Cen, P. L., & Yang, M. M. (2010). Molecular Biology Reports, 37, 3297–3302.

    Article  CAS  Google Scholar 

  32. Wu, Q., Li, C., Li, C., Chen, H., & Shuliang, L. (2010). Applied Biochemistry and Biotechnology, 160, 129–139.

    Article  CAS  Google Scholar 

  33. Yin, L. J., Lin, H. H., Chiang, Y. I., & Jiang, S. T. (2010). Journal of Agricultural and Food Chemistry, 58, 557–562.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Grant No. 2012-R1A1B3002174 from the Basic Research Program of the National Research Foundation (KRF) of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soon-Kwang Hong.

Additional information

Won-Jae Chi and Da Yeon Park contributed equally for this paper.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 301 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chi, WJ., Park, D.Y., Chang, YK. et al. A Novel Alkaliphilic Xylanase from the Newly Isolated Mesophilic Bacillus sp. MX47: Production, Purification, and Characterization. Appl Biochem Biotechnol 168, 899–909 (2012). https://doi.org/10.1007/s12010-012-9828-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-012-9828-z

Keywords

Navigation