Skip to main content
Log in

Immobilization of Pseudomonas fluorescens Lipase onto Magnetic Nanoparticles for Resolution of 2-Octanol

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The lipase from Pseudomonas fluorescens (Lipase AK, AKL) was immobilized onto the magnetic Fe3O4 nanoparticles via hydrophobic interaction. Enzyme loading and immobilization yield were determined as 21.4 ± 0.5 mg/g and 49.2 ± 1.8 %, respectively. The immobilized AKL was successfully used for resolution of 2-octanol with vinyl acetate used as acyl donor. Effects of organic solvent, water activity, substrate ratio, and temperature were investigated. Under the optimum conditions, the preferred isomer for AKL is the (R)-2-octanol and the highest enantioselectivity (E = 71.5 ± 2.2) was obtained with a higher enzyme activity (0.197 ± 0.01 μmol/mg/min). The results also showed that the immobilized lipase could be easily separated from reaction media by the magnetic steel and remained 89 % of its initial activity as well as the nearly unchanged enantioselectivity after five consecutive cycles, indicating a high stability in practical operation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

AKL:

Lipase from Pseudomonas fluorescens (Lipase AK AKL) was purchased from Amano Pharmaceutical Co. Ltd. (Japan)

a w :

Water activity

E value:

The enantiomeric ratio

ee:

The enantiomeric excess

References

  1. Schmid, R. D., & Verger, R. (1998). Angewandte Chemie International Edition, 37, 1608–1633.

    Article  Google Scholar 

  2. Reetz, M. T. (2002). Current Opinion in Chemical Biology, 6, 145–150.

    Article  CAS  Google Scholar 

  3. Tutar, H., Yilmaz, E., Pehlivan, E., & Yilmaz, M. (2009). International Journal of Biological Macromolecules, 45, 315–320.

    Article  CAS  Google Scholar 

  4. Sheldon, R. A. (2007). Advanced Synthesis and Catalysis, 349, 1289–1370.

    Article  CAS  Google Scholar 

  5. Yang, P., Teo, W. K., & Ting, Y. P. (2006). Bioresource Technology, 97, 39–46.

    Article  CAS  Google Scholar 

  6. Noureddini, H., Gao, X., & Philkana, R. S. (2005). Bioresource Technology, 96, 769–777.

    Article  CAS  Google Scholar 

  7. Mateo, C., Palomo, J. M., Fernandez, L. G., Guisan, J. M., & Fernandez, L. R. (2007). Enzyme and Microbial Technology, 40, 1451–1463.

    Article  CAS  Google Scholar 

  8. Rodrigues, R. C., Berenguer, M. Á., & Fernandez, L. R. (2011). Advanced Synthesis and Catalysis, 353, 2216–2238.

    Article  CAS  Google Scholar 

  9. Brady, D., & Jordaan, J. (2009). Biotechnology Letters, 31, 1639–1650.

    Article  CAS  Google Scholar 

  10. Iyer, P. V., & Ananthanarayan, L. (2008). Process Biochemistry, 43, 1019–1032.

    Article  CAS  Google Scholar 

  11. Fernandez, L. R. (2009). Enzyme and Microbial Technology, 45, 405–418.

    Article  Google Scholar 

  12. Hernandez, K., & Fernandez, L. R. (2011). Enzyme and Microbial Technology, 48, 107–122.

    Article  CAS  Google Scholar 

  13. Garcia, G. C., Berenguer, M. A., Fernandez, L. R., & Rodrigues, R. C. (2011). Advanced Synthesis and Catalysis, 353, 2885–2904.

    Article  Google Scholar 

  14. Gupta, A. K., & Gupta, M. (2005). Biomaterials, 26, 3995–4021.

    Article  CAS  Google Scholar 

  15. Li, X. H., & Sun, Z. H. (2003). Journal of Applied Polymer Science, 58, 1991–1997.

    Article  Google Scholar 

  16. Lu, A. H., Salabas, E. L., & Schuth, F. (2007). Angewandte Chemie International Edition, 46, 1222–1244.

    Article  CAS  Google Scholar 

  17. Pan, C. L., Hu, B., Li, W., Sun, Y., Ye, H., & Zeng, X. X. (2009). Journal of Molecular Catalysis B: Enzymatic, 61, 208–215.

    Article  CAS  Google Scholar 

  18. Bai, S., Guo, Z., Liu, W., & Sun, Y. (2006). Food Chemistry, 96, 1–7.

    Article  CAS  Google Scholar 

  19. Kuroiwa, T., Noguchi, Y., Nakajima, M., Sato, S., Mukataka, S., & Ichikawa, S. (2008). Process Biochemistry, 43, 62–69.

    Article  CAS  Google Scholar 

  20. Yong, Y., Bai, Y. X., Li, Y. F., Lin, L., Cui, Y. J., & Xia, C. G. (2008). Process Biochemistry, 43, 1179–1185.

    Article  CAS  Google Scholar 

  21. Cui, Y. J., Li, Y. F., Yang, Y., Liu, X., Lin, L., Zhou, L. C., & Pan, F. (2010). Journal of Biotechnology, 150, 171–174.

    Article  CAS  Google Scholar 

  22. Zhao, G., Bai, S., & Sun, Y. (2003). Enzyme and Microbial Technology, 32, 776–782.

    Article  Google Scholar 

  23. Jiang, D. S., Sheng, Y. L., Huang, J., Xiao, H. Y., & Zhou, J. Y. (2005). Biochemical Engineering Journal, 25, 15–23.

    Article  Google Scholar 

  24. Dyal, A., Loos, K., Noto, M., Chang, S. W., Spagnoli, C., & Shafi, K. V. P. M. (2003). Journal of the American Chemical Society, 125, 1684–1685.

    Article  CAS  Google Scholar 

  25. Liu, X. Q., Guana, Y. P., Shen, R., & Liu, H. Z. (2005). Journal of Chromatography B, 822, 91–97.

    Article  CAS  Google Scholar 

  26. Andradea, L. H., Rebelo, L. P., Netto, C. G. C. M., & Toma, H. E. (2010). Journal of Molecular Catalysis B: Enzymatic 66, 55–62.

    Google Scholar 

  27. McCabe, R. W., & Taylor, A. (2004). Tetrahedron, 60, 765–770.

    Article  CAS  Google Scholar 

  28. Lee, S. Y., & Rhee, J. S. (1993). Enzyme and Microbial Technology, 15, 617–623.

    Article  CAS  Google Scholar 

  29. Halling, P. J. (1992). Biotechnology Technology, 6, 271–276.

    Article  CAS  Google Scholar 

  30. Chen, C. S., Fujimoto, Y., Girdaukas, G., & Charles, J. S. (1982). Journal of the American Chemical Society, 104, 1294–1299.

    Google Scholar 

  31. Paravidino, M., Sorgedrager, M. J., Romano, V. A. O., & Hanefeld, U. (2010). Chemistry, 16, 7596–7604.

    Article  CAS  Google Scholar 

  32. Paul, A. F., & Alexander, M. K. (1991). Journal of the American Chemical Society, 113, 3166–3171.

    Article  Google Scholar 

  33. Gorman, L. A. S., & Dordick, J. S. (1992). Biotechnology and Bioengineering, 39, 392–397.

    Article  CAS  Google Scholar 

  34. Giacometti, J., & Giacometti, F. (2006). Chemical and Biochemical Engineering, 20, 269–274.

    CAS  Google Scholar 

  35. Halling, P. J. (1994). Enzyme and Microbial Technology, 16, 178–206.

    Article  CAS  Google Scholar 

  36. Ganapati, D. Y., & Archana, H. T. (2003). Enzyme and Microbial Technology, 32, 783–789.

    Article  Google Scholar 

  37. Bayramoglu, G., Yilmaz, M., & Arica, M. Y. (2004). Food Chemistry, 84, 591–599.

    Article  CAS  Google Scholar 

  38. Phillips, R. S. (1996). Trends in Biotechnology, 14, 13–16.

    Article  CAS  Google Scholar 

  39. Fernández-Lafuente, R., Armisén, P., Sabuquillo, P., Fernández-Lorente, G., & Guisán, J. M. (1998). Chemistry and Physics of Lipid, 93, 185–197.

    Article  Google Scholar 

  40. Fernández-Lorente, G., Palomo, J. M., Cabrera, Z., Guisán, J. M., & Fernández-Lafuente, R. (2007). Enzyme and Microbial Technology, 41, 565–569.

    Article  Google Scholar 

  41. Palomo, J. M., Segura, R. L., Fernández-Lorente, G., Dernas, M., Rua, M. C., Guisán, J. M., & Fernández-Lafuente, R. (2004). Biotechnology Process, 20, 630–635.

    Article  CAS  Google Scholar 

  42. Palomo, J. M., Fernández-Lorente, G., Mateo, C., Ortiz, C., Fernández-Lafuente, R., & Guisán, J. M. (2002). Enzyme and Microbial Technology, 31, 775–783.

    Article  CAS  Google Scholar 

  43. Yu, D. H., Chen, P., Wang, L., Cheng, Y. M., Wang, Z., & Cao, S. G. (2007). Process Biochemistry, 42, 1312–1318.

    Article  CAS  Google Scholar 

  44. Yu, D. H., Wang, Z., Zhao, L. F., Cheng, Y. M., & Cao, S. G. (2007). Journal of Molecular Catalysis B: Enzymatic, 48, 64–69.

    Article  CAS  Google Scholar 

  45. Yu, D. H., Wang, Z., Chen, P., Jin, L., Cheng, Y. M., Zhou, J. G., & Cao, S. G. (2007). Journal of Molecular Catalysis B: Enzymatic, 48, 51–57.

    Article  CAS  Google Scholar 

  46. Yu, D. H., Ma, D. X., Wang, Z., Wang, Y., Pan, Y., & Fang, X. X. (2012). Process Biochemistry, 47, 479–484.

    Article  CAS  Google Scholar 

  47. Zhao, L. F., & Zheng, L. Y. (2011). Biocatalysis and Biotransformation, 29, 47–53.

    Article  CAS  Google Scholar 

  48. Du, C., Zhao, B., Li, C. Y., Wang, P., Wang, Z., Tang, J., & Wang, L. (2009). Biocatalysis and Biotransformation, 27, 340–347.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful for the financial supports from National Natural Science Foundation of China (nos. 31070708, 20772046, and 21172093) and the Natural Science Foundation of Jilin Province (no. 201115038).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lei Wang or Zhi Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xun, En., Lv, Xl., Kang, W. et al. Immobilization of Pseudomonas fluorescens Lipase onto Magnetic Nanoparticles for Resolution of 2-Octanol. Appl Biochem Biotechnol 168, 697–707 (2012). https://doi.org/10.1007/s12010-012-9810-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-012-9810-9

Keywords

Navigation