Skip to main content

Advertisement

Log in

Hydrogen and Methane Production, Energy Recovery, and Organic Matter Removal from Effluents in a Two-Stage Fermentative Process

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

This study evaluates the potential for using different effluents for simultaneous H2 and CH4 production in a two-stage batch fermentation process with mixed microflora. An appreciable amount of H2 was produced from parboiled rice wastewater (23.9 mL g−1 chemical oxygen demand [COD]) and vinasse (20.8 mL g−1 COD), while other effluents supported CH4 generation. The amount of CH4 produced was minimum for sewage (46.3 mL g−1 COD), followed by parboiled rice wastewater (115.5 mL g−1 COD) and glycerol (180.1 mL g−1 COD). The maximum amount of CH4 was observed for vinasse (255.4 mL g−1 COD). The total energy recovery from vinasse (10.4 kJ g−1 COD) corresponded to the maximum COD reduction (74.7 %), followed by glycerol (70.38 %, 7.20 kJ g−1 COD), parboiled rice wastewater (63.91 %, 4.92 kJ g−1 COD), and sewage (51.11 %, 1.85 kJ g−1 COD). The relatively high performance of vinasse in such comparisons could be attributed to the elevated concentrations of macronutrients contained in raw vinasse. The observations are based on kinetic parameters of H2 and CH4 production and global energy recovery of the process. These observations collectively suggest that organic-rich effluents can be deployed for energy recovery with sequential generation of H2 and CH4.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

COD:

chemical oxygen demand, in milligrams per liter

BOD:

biological oxygen demand, in milligrams per liter

HRT:

hydraulic retention time, in hours

C:

carbon

N:

nitrogen

P:

phosphorus

TS:

total solids, in milligrams per liter

VS:

volatile solids, in milligrams per liter

FS:

fixed solids, in milligrams per liter

VSS:

volatile suspended solids, in milligrams per liter

X :

microorganisms concentration, in milligrams per liter VSS

S:

substrate, in milligrams per liter

SMP:

soluble metabolites production, in milligrams per liter

References

  1. Ito, T., Nakashimada, Y., Senba, K., Matsui, T., & Nishio, N. (2005). Journal of Bioscience and Bioengineering, 100, 260–265.

    Article  CAS  Google Scholar 

  2. Hawkes, F. R., Forsey, H., Premier, G. C., Dinsdale, R. M., Hawkes, D. L., Guwy, A. J., et al. (2008). Bioresource Technology, 99, 5020–5029.

    Article  CAS  Google Scholar 

  3. Li, J., Li, B., Zhu, G., Ren, N., Bo, L., & He, J. (2007). International Journal of Hydrogen Energy, 32, 3274–3283.

    Article  CAS  Google Scholar 

  4. Lianhua, L., Dong, L., Yongming, S., Longlong, M., Zhenhong, Y., & Xiaoying, K. (2010). International Journal of Hydrogen Energy, 35, 7261–7266.

    Article  Google Scholar 

  5. Pakarinen, O. M., Tähti, H. P., & Rintala, J. A. (2009). Biomass and Bioenergy, 33, 1419–1427.

    Article  CAS  Google Scholar 

  6. Wang, W., Xie, L., Chen, J., Luo, G., & Zhou, Q. (2011). Bioresource Technology, 102, 3833–3839.

    Article  CAS  Google Scholar 

  7. Peixoto, G., Saavedra, N. K., Varesche, M. B. A., & Zaiat, M. (2011). International Journal of Hydrogen Energy, 36, 8953–8966.

    Article  CAS  Google Scholar 

  8. Gao, D., An, R., Tao, Y., Li, J., Li, X., & Ren, N. (2011). Journal of Hazardous Materials, 186, 383–389.

    Article  CAS  Google Scholar 

  9. Cooney, M., Maynard, N., Cannizzaro, C., & Benemann, J. (2007). Bioresource Technology, 98, 2641–2651.

    Article  CAS  Google Scholar 

  10. Giordano, A., Cantù, C., Spagni, A., & Ring, M. Y. (2011). Bioresource Technology, 102, 4474–4479.

    Article  CAS  Google Scholar 

  11. Parawira, W., Read, J. S., Mattiasson, B., & Björnsson, L. (2008). Biomass and Bioenergy, 32, 44–50.

    Article  CAS  Google Scholar 

  12. Wang, X., & Zhao, Y. (2009). International Journal of Hydrogen Energy, 34, 245–254.

    Article  CAS  Google Scholar 

  13. Xie, B., Cheng, J., Zhou, J., Song, W., & Cen, K. (2008). International Journal of Hydrogen Energy, 33, 5006–5011.

    Article  CAS  Google Scholar 

  14. Lay, J. J., Lee, Y. J., & Noike, T. (1999). Water Research, 33, 2579–2586.

    Article  CAS  Google Scholar 

  15. van Ginkel, S. W., Oh, S. E., & Logan, B. E. (2005). International Journal of Hydrogen Energy, 30, 1535–1542.

    Article  Google Scholar 

  16. Fernandes, B. S., Peixoto, G., Albrecht, F. R., Saavedra, N. K. D. A., & Zaiat, M. (2010). Energy for Sustainable Development, 14, 143–148.

    Article  CAS  Google Scholar 

  17. Wu, K. J., Saratale, G. D., Lo, Y. C., Chen, W. M., Tseng, Z. J., & Chang, M. C. (2008). Bioresource Technology, 99, 7966–7970.

    Article  CAS  Google Scholar 

  18. Lo, Y. C., Chen, W. M., Hung, C. H., Chen, S. D., & Chang, J. S. (2008). Water Research, 42, 827–842.

    Article  CAS  Google Scholar 

  19. Xie, B. F., Cheng, J., Zhou, J. H., Song, W. L., Liu, J. Z., & Cen, K. F. (2007). Bioresource Technology, 99, 5942–5946.

    Article  Google Scholar 

  20. Johnston, B., Mayo, M. C., & Khare, A. (2005). Technovation, 25, 569–585.

    Article  Google Scholar 

  21. Zhu, H. G., Stadnyk, A., Beland, M., & Seto, P. (2008). Bioresource Technology, 99, 5078–5084.

    Article  CAS  Google Scholar 

  22. Da Silva, G. P., Mack, M., & Contiero, J. (2009). Biotechnology Advances, 27, 30–39.

    Article  Google Scholar 

  23. UNICA. (Sugarcane Agroindustry Union of São Paulo State). Available from: http://www.unica.com.br/dadosCotacao/estatistica/. Acessed 29 May 2011.

  24. Amato, G. W., Carvalho, J. L. V., Silveira, F. S. (2000). Arroz parboiled: Tecnologia limpa, produto nobre, Porto Alegre, RS, Brazil (in Portuguese).

  25. EPAGRI. (Rural Extension and Agropecuary Research Business). Available from: http://cepa.epagri.sc.gov.br/. Accessed 29 May 2011.

  26. IBGE. (Brazilian Institute for Geography and Statistic). Available from: http://www.ibge.gov.br/home/estatistica/populacao/condicaodevida/pnsb2008/tabelas.pdf/tab057.pdf. Accessed 6 June 2012.

  27. Del Nery, V., De Nardi, I. R., Damianovic, M. H. R. Z., Pozzi, E., Amorim, A. K. B., & Zaiat, M. (2007). Resources, Conservation and Recycling, 50, 102–114.

    Article  Google Scholar 

  28. APHA. (American Public Health Association). (2005). Standard methods for the examination of water and wastewater, 21st ed. Washington, DC.

  29. Dillalo, R., & Albertson, O. E. (1961). Journal of the Water Pollution Control Federation, 33, 356–365.

    Google Scholar 

  30. Ripley, L. E., Boyle, W. C., & Converse, J. C. (1986). Journal of the Water Pollution Control Federation, 58, 406–411.

    CAS  Google Scholar 

  31. Dubois, M., Gilles, K. A., Hamilton, J. L., Rebers, P. A., & Smith, F. (1956). Analytical Chemistry, 28, 350–356.

    Article  CAS  Google Scholar 

  32. Zwietering, M. H., Jongenburger, I., Rombouts, F. M., & Van’s Riet, K. (1990). Applied and Environmental Microbiology, 56, 1875–1881.

    CAS  Google Scholar 

  33. Borja, R., Martín, A., Alonso, V., García, C. J., & Banks, C. J. (1995). Water Research, 29, 489–495.

    Article  CAS  Google Scholar 

  34. Logan, B., Oh, S. E., Kim, I., & van Ginkel, S. W. (2002). Environmental Science and Technology, 36, 2530–2535.

    Article  CAS  Google Scholar 

  35. Okamoto, M., Myahara, T., Mizuno, O., & Noike, T. (2000). Water Science and Technology, 41, 25–32.

    CAS  Google Scholar 

  36. Nagase, M., & Matuo, T. (1982). Biotechnology and Bioengineering, 24, 2227–2239.

    Article  CAS  Google Scholar 

  37. Hanaki, K., Matsuo, T., & Nagase, M. (1981). Biotechnology and Bioengineering, 23, 1591–1610.

    Article  CAS  Google Scholar 

  38. Barbirato, F., Chedaille, D., & Bories, A. (1997). Applied Microbiology and Biotechnology, 47, 411–416.

    Article  Google Scholar 

  39. Lay, J. J. (2000). Biotechnology and Bioengineering, 68, 269–278.

    Article  CAS  Google Scholar 

  40. Seifert, K., Waligorska, M., Wojtowski, M., & Laniecki, M. (2009). International Journal of Hydrogen Energy, 34, 3671–3678.

    Article  CAS  Google Scholar 

  41. Argun, H., Kargi, F., Kapdan, I. K., & Oztekin, R. (2008). International Journal of Hydrogen Energy, 33, 1813–1819.

    Article  CAS  Google Scholar 

  42. Fang, H. H. P., Li, C., & Zhang, T. (2006). International Journal of Hydrogen Energy, 31, 683–692.

    Article  CAS  Google Scholar 

  43. Chen, W. H., Chen, S. Y., Khanal, S. K., & Sung, S. (2006). International Journal of Hydrogen Energy, 31, 2170–2178.

    Article  CAS  Google Scholar 

  44. Khanal, S. K., Chen, W.-H., Li, L., & Sung, S. (2004). International Journal of Hydrogen Energy, 29, 1123–1131.

    CAS  Google Scholar 

  45. Sreethawong, T., Chatsiriwatana, S., Rangsunvigit, P., & Chavadej, S. (2010). International Journal of Hydrogen Energy, 35, 4092–4102.

    Article  CAS  Google Scholar 

  46. Mohan, S. V., Mohanakrishna, G., Ramanaiah, S. V., & Sarma, P. N. (2008). International Journal of Hydrogen Energy, 33, 550–558.

    Article  Google Scholar 

  47. Buitrón, G., & Carvajal, C. (2010). Bioresource Technology, 101, 9071–9077.

    Article  Google Scholar 

  48. Tchobanoglous, G., Burton, F. L., & Stensel, H. D. (2003). Wastewater engineering: treatment and reuse (4th ed.). New York: McGraw Hill.

    Google Scholar 

  49. Hawkes, F. R., Dinsdale, R., Hawkes, D. L., & Hussy, I. (2002). International. Journal of Hydrogen Energy, 27, 1339–1347.

    Article  CAS  Google Scholar 

  50. Antonopoulou, G., Gavala, H. N., Skiadas, I. V., Angelopoulos, K., & Lyberatos, G. (2008). Bioresource Technology, 99, 110–119.

    Article  CAS  Google Scholar 

  51. Minton, N. P., & Clarke, D. J. (1989). Biotechnology handbook, vol. 3 (1st ed.). New York: Plenum.

    Google Scholar 

  52. Thauer, R. K., Jungermann, K., & Decker, K. (1977). Bacteriology Reviews, 41, 100–180.

    CAS  Google Scholar 

  53. Levin, D. B., Pitt, L., & Love, M. (2004). International Journal of Hydrogen Energy, 29, 173–185.

    Article  CAS  Google Scholar 

  54. Gujer, W., & Zehnder, A. J. B. (1983). Water Science and Technology, 15, 127–167.

    CAS  Google Scholar 

  55. López, J. A. S., Santos, M. A. A., Pérez, A. F. C., & Martín, A. M. (2009). Bioresource Technology, 100, 5609–5615.

    Article  Google Scholar 

  56. Campos J. R. (1999). Tratamento de esgotos sanitários por processo anaeróbio e disposição controlada no solo (ABES). Rio de Janeiro, RJ, Brazil (in Portuguese).

  57. Lalov, I. G., Krysteva, M. A., & Phelouzat, J. (2001). Bioresource Technology, 79, 83–85.

    Article  CAS  Google Scholar 

  58. Harada, H., Uemura, S., Chen, A., & Jayadevan, J. (1996). Bioresource Technology, 55, 215–221.

    Article  CAS  Google Scholar 

  59. Jones, W. J., Guyot, J., & Wolfe, R. S. (1984). Applied and Environmental Microbiology, 47, 1–6.

    CAS  Google Scholar 

  60. IEA. (International Energy Agency). IEA energy technology essentials (April, 2007). Available from: http://www.iea.org/techno/essentials5.pdf. Accessed 30 May 2011.

  61. Chiesa, P., & Macchi, E. (2002). Journal of Engineering for Gas Turbines and Power, 126, 770–786.

    Article  Google Scholar 

  62. EPE. (Energy Research Company). Available from: http://www.epe.gov.br/Paginas/default.aspx. Accessed 28 December 2011.

Download references

Acknowledgments

The authors wish to thank Murilo Daniel de Mello Innocentini and Tatiane Lotufo Leite for providing some of the industrial effluents used in this work. This work was funded by the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) and the Conselho Nacional de Desenvolvimento Científico e Tecnológico, Brazil (CNPq).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guilherme Peixoto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peixoto, G., Pantoja-Filho, J.L.R., Agnelli, J.A.B. et al. Hydrogen and Methane Production, Energy Recovery, and Organic Matter Removal from Effluents in a Two-Stage Fermentative Process. Appl Biochem Biotechnol 168, 651–671 (2012). https://doi.org/10.1007/s12010-012-9807-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-012-9807-4

Keywords

Navigation