Skip to main content
Log in

Production of Mixed-Linkage Beta-Oligosaccharides from Lichenan Using Immobilized Bacillus licheniformis UEB CF Lichenase

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Lichenase from Bacillus licheniformis UEB CF was immobilized on Amberlite IR120 H. The immobilization yield and lichenase activity were 87 and 92.81 % of initial activity, respectively. The immobilized enzyme exhibited a shift in the optimal pH from 5.0 to 3.0, but the activity optimal temperature was not affected. The immobilized enzyme showed a residual activity of 50 % after five uses. It also exhibited high storage stability and retained 50 % of its initial activity after 120 days at 4 °C. The main hydrolysis products yielded from lichenan were trisaccharide and tetrasaccharide. The resulting mixed-linkage beta-oligosaccharides could be used as a special nutriment for lactic bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Skendi, A., Biliaderis, C. G., Lazaridou, A., & Izydorczyk, M. S. (2003). Structure and rheological properties of water soluble beta-glucans from oat cultivars of Avena sativa and Avena bysantina. Journal of Cereal Science, 38, 15–31.

    Article  CAS  Google Scholar 

  2. McCarthy, T., Hanniffy, O., Savage, A., & Tuohy, M. G. (2003). Catalytic properties and mode of action of three endo-β-glucanases from Talaromyces emersonii on soluble β-1,4-and β-1,3,1,4-linked glucans. International Journal of Biological Macromolecules, 33, 141–148.

    Article  CAS  Google Scholar 

  3. Boyce, A., & Walsh, G. (2007). Production, purification and application relevant characterization of an endo-1, 3(4)-β-glucanase from Rhizomucor miehei. Applied Microbiology and Biotechnology, 76, 835–841.

    Article  CAS  Google Scholar 

  4. Yang, S., Yan, Q., Jiang, Z., Fan, G., & Wang, L. (2008). Biochemical characterization of a novel thermostable β-1, 3-1, 4-glucanase (lichenase) from Paecilomyces thermophila. Journal of Agricultural and Food Chemistry, 56, 5345–5351.

    Article  CAS  Google Scholar 

  5. Celestino, K. R. S., Cunha, R. B., & Felix, C. R. (2006). Characterization of a β-glucanase produced by Rhizopus microsporus var. microsporus, and its potential for application in the brewing industry. BMC Biochemistry, 7, 23.

    Article  Google Scholar 

  6. Mathlouthi, N., Serge, M., Luc, S., Bernard, Q., & Michel, L. (2002). Effects of xylanase and β-glucanase addition on performance, nutrient digestibility, and physico-chemical conditions in the small intestine contents and faecal microflora of broiler chickens fed a wheat and barley-based diet. Animal Research, 51, 395–406.

    Article  CAS  Google Scholar 

  7. Beckmann, L., Simon, O., & Vahjen, W. (2006). Isolation and identification of mixed linked β-glucan degrading bacteria in the intestine of broiler chickens and partial characterization of respective 1,3-1, 4-β-glucanase activities. Journal of Basic Microbiology, 46, 175–185.

    Article  CAS  Google Scholar 

  8. Kottwitz, B., Maurer, K. (2002). Detergent containing glucanase. US Patent 6417152.

  9. Barreteau, H., Delattre, C., & Michaud, P. (2006). Production of oligosaccharides as promising new food additive generation. Food Technology and Biotechnology, 44(3), 323–333.

    CAS  Google Scholar 

  10. Johansson, L., Virkki, L., Anttila, H., Esselstrom, H., Tuomainen, P., & Sontag-Strohm, T. (2006). Hydrolysis of beta-glucan. Food Chemistry, 97, 71–79.

    Article  CAS  Google Scholar 

  11. Abdel-Naby, M. A., Sherif, A. A., EI-Tanash, A. B., & Mankarios, A. T. (1999). Immobilization of Aspergillus oryzae tannase and properties of the immobilized enzyme. Journal of Applied Microbiology, 87, 108–114.

    Article  CAS  Google Scholar 

  12. Tu, M., Zhang, X., Kurabi, A., Gilkes, N., Mabee, W., & Saddler, J. (2006). Immobilization of ß-glucosidase on Eupergit C for lignocellulose hydrolysis. Biotechnology Letters, 28, 151–156.

    Article  CAS  Google Scholar 

  13. Krajewska, B. (2004). Application of chitin- and chitosan-based materials for enzyme immobilizations: a review. Enzyme and Microbial Technology, 35, 126–139.

    Article  CAS  Google Scholar 

  14. De Oliveira, P. C., Alves, G. M., & Castro, H. F. (2000). Immobilization studies and catalytic properties of microbial lipase onto styrene-divinylbenzene copolymer. Biochemical Engineering Journal, 5(1), 63–71.

    Article  Google Scholar 

  15. Subramanian, A., Kennel, S. J., Oden, P. I., Jacobson, K. B., Woodward, J., & Doktyez, M. J. (1999). Comparison of techniques for enzyme immobilization on silicon supports: effect of cross-linker chain length on enzyme activity. Enzyme and Microbial Technology, 24, 26–34.

    Article  CAS  Google Scholar 

  16. Torres, R., Mateo, C., Fuentes, M., Palomo, J. M., Ortiz, C., & Fernandez-Lafuente, R. (2002). Reversible immobilization of glutaryl acylase on sepabeads coated with polyethyleneimine. Biotechnology Progress, 18, 1221–1226.

    Article  CAS  Google Scholar 

  17. Chae, H. J., In, M. J., & Kim, E. Y. (1998). Optimization of protease immobilization by covalent binding using glutaraldehyde. Applied Biochemistry and Biotechnology, 73, 195–204.

    Article  CAS  Google Scholar 

  18. Albayrak, N., & Yang, S. T. (2002). Immobilization of β-galactosidase on fibrous matrix by polyethyleneimine for production of galacto-oligosaccharides from lactose. Biotechnology Progress, 18, 240–251.

    Article  CAS  Google Scholar 

  19. Svensson, B., & Ottesen, M. (1978). Immobilization of β-glucanase and studies on its degradation of barley β-glucan. Carlsberg Research Communication, 43, 5–14.

    Article  CAS  Google Scholar 

  20. Linko, Y. Y., & Linko, P. (1979). Immobilized β-glucanases and their applications. Biotechnology Letters, 1, 489–494.

    Article  CAS  Google Scholar 

  21. Gargouri, M., Smaali, I., Maugard, T., Legoy, M. D., & Marzouki, N. (2004). Fungus β-glycosidases: immobilization and use in alkyl-β-glycoside synthesis. Journal of Molecular Catalysis B: Enzymatic, 29, 89–94.

    Article  CAS  Google Scholar 

  22. Guerfali, M., Maalej, I., Gargouri, A., & Belghith, H. (2009). Catalytic properties of the immobilized Talaromyces thermophilus β-xylosidase and its use for xylose and xylooligosaccharides production. Journal of Molecular Catalysis B: Enzymatic, 57, 242–249.

    Article  CAS  Google Scholar 

  23. Maalej-Achouri, I., Guerfali, M., Gargouri, A., & Belghith, H. (2009). Production of xylo-oligosaccharides from agro-industrial residues using immobilized Talaromyces thermophilus xylanase. Journal of Molecular Catalysis B: Enzymatic, 59, 145–152.

    Article  CAS  Google Scholar 

  24. Miller, G. L. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytic Chemistry, 31, 426–428.

    Article  CAS  Google Scholar 

  25. Omar, I. C., & Suguna, R. (1993). Characteristics of immobilized lipase by adsorption on amberlite MB-1. Asia Pacific Journal of Molecular Biology and Biotechnology, 1, 103–107.

    Google Scholar 

  26. Arullan, A., Sastry, C. A., & Hashim, M. A. (1997). Immobilization of urease using Amberlite MB-1. Bioprocess Engineering, 17(6), 355–359.

    Article  Google Scholar 

  27. Kim, P. S., Shin, H. D., Park, J. K., & Lee, Y. H. (2000). Immobilization of cyclodextrin glucanotransferase on amberlite IRA-900 for biosynthesis of transglycosylated xylitol. Biotechnology and Bioprocess Engineering, 5, 174–180.

    Article  CAS  Google Scholar 

  28. Esawy, M. A., & Combet-Blanc, Y. (2006). Immobilization of Bacillus licheniformis 5A1 milk-clotting enzyme and characterization of its enzyme properties. World Journal of Microbiology and Biotechnology, 22, 197–200.

    Article  CAS  Google Scholar 

  29. Matos, R. C., Coelho, E. O., Souza, C. F., Guedes, F. A., & Matos, M. A. (2006). Peroxidase immobilized on Amberlite IRA-743 resin for on-line spectrophotometric detection of hydrogen peroxide in rainwater. Talanta, 69, 1208–1214.

    Article  CAS  Google Scholar 

  30. Yun, J. W., Park, J. P., Song, C. H., Lee, C. Y., Kim, J. H., & Song, S. K. (2000). Continuous production of inulo-oligosaccharides from chicory juice by immobilized endoinulinase. Bioprocess Engineering, 22(3), 189–194.

    Article  CAS  Google Scholar 

  31. Chellapandian, M. (1998). Preparation and characterization of alkaline protease immobilized on vermiculite. Process Biochemistry, 33(2), 169–173.

    Article  CAS  Google Scholar 

  32. Goldstein, L., Levin, Y., Pecht, M., & Katchalski, E. (1964). A water insoluble polyanionic derivative of trypsin. II. Effet of the polyelectrolyte carrier on the kinetic behaviour of the bound trypsin. Biochemistry, 3, 1915–1919.

    Article  Google Scholar 

  33. Kusano, S., Shiraishi, T., Takahashi, S. I., Fujimoto, D., & Sakano, Y. (1989). Immobilization of Bacillus acidopullulyticus pullulanase and properties of the immobilized pullulanases. Journal of Fermentation and Bioengineering, 68, 233–237.

    Article  CAS  Google Scholar 

  34. Xiao, C., Hui, Z., Wei, L., & Jiacong, S. (1990). Simultaneous saccharification and isomerization by immobilized glucoamylase and glucose isomerase. Journal of Chemical Technology and Biotechnology, 47, 161–167.

    Google Scholar 

  35. Tien, C. J., & Chaing, B. H. (1999). Immobilization of α-amylase on a zirconium dynamic membrane. Process Biochemistry, 35, 377–383.

    Article  CAS  Google Scholar 

  36. Aksoy, S., Tumturk, H., & Hasirci, N. (1998). Stability of α-amylase immobilized on poly(methyl methacrylate-acrylic acid) microspheres. Journal of Biotechnology, 60, 37–46.

    Article  CAS  Google Scholar 

  37. Vu, T. K. H., & Le, V. V. M. (2008). Biochemical studies on the immobilization of the enzyme invertase (EC.3.2.1.26) in alginate gel and its kinetics. ASEAN Food Journal, 15, 73–78.

    CAS  Google Scholar 

  38. Jaskari, J., Kontula, P., Siitonen, A., Jousimies-Somer, H., Mattila-Sandholm, T., & Poutanenl, K. (1998). Oat β-glucan and xylan hydrolysates as selective substrates for Bifidobacterium and Lactobacillus strains. Applied Microbiology and Biotechnology, 49, 175–181.

    Article  CAS  Google Scholar 

  39. Miyanishi, N., Iwamoto, Y., Watananabe, E., & Oda, T. (2003). Induction of TNF-α production from human peripheral blood monocytes with beta-1-3-glucan oligomer prepared from laminarin with beta-1-3-glucanase from Bacillus clausii NM-1. Journal of Bioscience and Bioengineering, 95(2), 192–195.

    CAS  Google Scholar 

  40. Pang, Z., Otaka, K., Maoka, T., Hidaka, K., Ishijima, S., Oda, M., et al. (2005). Structure of beta-oligomer from laminarin and its effect on human monocytes to inhibit the proliferation of U937 cells. Bioscience, Biotechnology, and Biochemistry, 69(3), 553–558.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was financially supported in part by the Tunisian Ministry of Higher Education and Scientific Research. The authors wish to express their gratitude to Mr. Jamil JAOUA, founder and former Head of the English Unit at the Sfax Faculty of Science, for carefully proofreading the manuscript of the present paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Semia Ellouz-Chaabouni.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chaari, F., Blibech, M., Bhiri, F. et al. Production of Mixed-Linkage Beta-Oligosaccharides from Lichenan Using Immobilized Bacillus licheniformis UEB CF Lichenase. Appl Biochem Biotechnol 168, 616–628 (2012). https://doi.org/10.1007/s12010-012-9804-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-012-9804-7

Keywords

Navigation