Skip to main content

Advertisement

Log in

Role of TDZ in the Quick Regeneration of Multiple Shoots from Nodal Explant of Vitex trifolia L.—an Important Medicinal Plant

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The effect of thidiazuron (TDZ) has been investigated in shoot multiplication for a simple, efficient, rapid, and commercially applicable regeneration protocol of an important medicinal plant, Vitex trifolia. Multiple shoots were induced in nodal explants obtained from a mature tree on Murashige and Skoog (MS) medium supplemented with TDZ in various concentrations (0.5, 1.0, 2.5, 5.0, 7.5, or 10.0 μM). Prolonged exposure of the culture to TDZ had an adverse affect. To avoid this, the cultures were transferred to TDZ-free MS medium or MS medium fortified with various concentrations of 6-benzyladenine (BA) alone or in combination with α-naphthalene acetic acid (NAA) to enhance multiplication, proliferation, and elongation of induced shoots. Optimum shoot multiplication and elongation was achieved when TDZ-exposed explants were repeatedly subcultured on MS media containing a combination of 1.0 μM BA and 0.5 μM NAA. The highest shoot regeneration frequency (90 %) and maximum number (22.3 ± 0.2) of shoots per explant with shoot length of (5.2 ± 0.2 cm) was recorded on MS medium fortified with 5.0 μM TDZ. In vitro rooting of isolated shoots was achieved best in half-strength MS medium containing 0.5 μM NAA. Properly rooted plantlets were successfully hardened off and acclimatized in thermocol cups containing sterile Soilrite. These plantlets were then transferred to pots containing different potting substrate; percentage survival of the plantlets was highest in vermiculite/garden soil mixture (1:1) and successfully transfer to greenhouse under sunlight.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Anonymous. (2003). The wealth of India—raw materials, Vol. X (p. 525). New Delhi: CSIR.

    Google Scholar 

  2. Kirtikar, K. R., & Basu, B. D. (1991). Indian medicinal plants (pp. 1935–1944). Allahabad: Lalit Mohan Basu.

    Google Scholar 

  3. Varier, P. S. (2003). Indian medicinal plants (pp. 387–395). Hyderabad: Orient Longman.

    Google Scholar 

  4. Pullaiah, T., & Naidu, K. C. (2003). Antidiabetic plants in India and herbal bases antibiotic research (pp. 314–315). New Delhi: Regency Publication.

  5. Kannathasan, K., Senthilkumar, A., Chandrasekaran, M., & Venkatesalu, V. (2007). Parasitology Research, 101, 1721–1723.

    Article  Google Scholar 

  6. Woradulayapinij, W., Soonthornchareonnon, N., & Wiwat, C. (2005). Journal of Ethnopharmacology, 101(1-3), 84–89.

    Article  Google Scholar 

  7. Li, W. X., Cui, C. B., Cai, B., Wang, H. Y., & Yao, X. S. (2005). Journal of Asian Natural Products Research, 7, 615–626.

    Article  CAS  Google Scholar 

  8. Hernandez, M. M., Heraso, C., Villareal, M. L., Vargas-Arispuro, I., & Aranda, E. (1999). Journal of Ethnopharmacology, 67, 37–44.

    Article  CAS  Google Scholar 

  9. Hossain, M. M., Paul, N., Sohrab, M. H., Rahman, E., & Rashid, M. A. (2001). Fitoterapia, 72, 695–697.

    Article  CAS  Google Scholar 

  10. Ikram, M., Khattak, S. G., & Gilani, S. N. (1987). Journal of Ethnopharmacology, 19, 185–192.

    Article  CAS  Google Scholar 

  11. Chadha, Y. R. (1976). The wealth of india, raw materials. Vol. 10. Publication and Information Directorate. New Delhi: CSIR.

    Google Scholar 

  12. Faisal, M., Siddique, I., & Anis, M. (2006). Annals of Applied Biology, 148, 1–6.

    Article  CAS  Google Scholar 

  13. Ahmad, N., & Anis, M. (2007). Agroforestry System, 71, 195–200.

    Article  Google Scholar 

  14. Murashige, T., & Skoog, F. (1962). Physiologia Plantarum, 15, 473–497.

    Article  CAS  Google Scholar 

  15. Mok, M. C., Mok, D. W. S., Armstrong, D. J., Shudo, K., Isogai, Y., & Okamoto, T. (1982). Phytochemistry, 21, 1509–1511.

    CAS  Google Scholar 

  16. Wang, S. Y., Steffens, G. L., & Faust, M. (1986). Phytochemistry, 25, 311–317.

    Article  CAS  Google Scholar 

  17. Faisal, M., Ahmad, N., & Anis, M. (2005). Plant Cell Tissue Organ Culture, 80, 187–190.

    Article  CAS  Google Scholar 

  18. Husain, M. K., Anis, M., & Shahzad, A. (2007). In Vitro Cellular Developmental Biology of Plants, 43, 59–64.

    Article  CAS  Google Scholar 

  19. Huetteman, C. A., & Preece, J. E. (1993). Plant Cell Tissue Organ Culture, 33, 105–119.

    Article  CAS  Google Scholar 

  20. Thomas, J. C., & Katterman, F. R. (1986). Plant Physiology, 81, 681–683.

    Article  CAS  Google Scholar 

  21. Capelle, S. C., Mok, D. W. S., Kirchner, S. C., & Mok, M. C. (1983). Plant Physiology, 73, 796–802.

    Article  CAS  Google Scholar 

  22. Murch, S. J., & Saxena, P. K. (2001). Plant Growth Regulator, 35, 269–275.

    Article  CAS  Google Scholar 

  23. Siril, E. A., & Dhar, U. (1997). Plant Cell Reports, 16, 637–640.

    Article  CAS  Google Scholar 

  24. Carman, J. G., Jefferson, N. E., & Cambell, W. F. (1987). Plant Cell Tissue Organ Culture, 10, 115–128.

    Article  CAS  Google Scholar 

  25. Doctrinal, M., Sangwan, R. S., & Sangwan-Norreel, B. S. (1989). Plant Cell Tissue Organ Culture, 17, 1–12.

    Google Scholar 

  26. Arora, K., Sharma, M., Srivastava, J., Ranade, S. A., & Sharma, A. K. (2010). Agroforestry Systems, 78, 53–63.

    Article  Google Scholar 

  27. Jahan, A. A., & Anis, M. (2009). Acta Phyiologiae Plantarum, 31, 133–138.

    Article  CAS  Google Scholar 

  28. Hiregoudar, L. V., Murthy, H. N., Bhat, J. G., Nayeem, A., Hema, B. P., Hahn, E. J., & Paek, K. Y. (2006). Biologia Plantarum, 50(2), 291–294.

    Article  Google Scholar 

  29. Parveen, S., & Shahzad, A. (2010). Physiology and Molecular Biology of Plants, 16(2), 201–206.

    Article  Google Scholar 

  30. Kim, M. K., Sommer, H. E., Bongarten, B. C., & Markle, S. A. (1997). Plant Cell Reports, 16, 536–540.

    CAS  Google Scholar 

  31. Tiwari, V., Tiwari, K. N., & Singh, B. D. (2001). Plant Cell Tissue Organ Culture, 66, 9–16.

    Article  CAS  Google Scholar 

  32. Ahmad, N., & Anis, M. (2005). Turkish Journal of Botany, 29, 237–240.

    Google Scholar 

  33. Ahmad, N., Srivastava, R., & Anis, M. (2006). Propagation of Ornamental Plants, 6(3), 109–113.

    Google Scholar 

  34. Fatima, N., Ahmad, N., & Anis, M. (2011). Plant Physiology and Biochemistry, 49, 1465–1471.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Md. Rafique Ahmed is thankful to the University Grants Commission (UGC), Govt. of India, New Delhi for its award of Junior Research Fellow (F1-17.1/2011/MANF-MUS-MAN-581) (SA-III/manfugc). Research support provided by the Department of Science and Technology (DST) in the form of DST-FIST (2011-16) and UGC in the form of UGC-SAP; DRS-I Programme is duly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Anis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ahmed, M.R., Anis, M. Role of TDZ in the Quick Regeneration of Multiple Shoots from Nodal Explant of Vitex trifolia L.—an Important Medicinal Plant. Appl Biochem Biotechnol 168, 957–966 (2012). https://doi.org/10.1007/s12010-012-9799-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-012-9799-0

Keywords

Navigation