Skip to main content
Log in

Improved Antimicrobial Potency through Synergistic Action of Chitosan Microparticles and Low Electric Field

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Techniques to inhibit gram-negative bacteria such as Shiga toxin-producing Escherichia coli are valuable as the prevalence of large-scale industrial food preparation increases the likelihood of contamination. Chitosan, the deacetylated derivative of chitin, has been demonstrated to inhibit bacteria growth in acidic environments, but is significantly less effective in preventing bacteria grown at pH >7.0. Pulsed electric fields, constituting another method of bacteria inhibition, are difficult to generate at sufficient strength due to the high electric potentials required. This study utilizes adsorption of particulate chitosan in a very low electric field for an increased inhibition of gram-negative bacteria in neutral or alkaline pH conditions. Chitosan microparticles are demonstrated to flocculate E. coli, inhibit growth, and exhibit increased efficacy when combined with a low voltage electric field applied over 2-min intervals. Using sustained pulses of approximately 100 V/cm, it is demonstrated that bacteria viability is reduced by several orders of magnitude. The degree of bacterial inhibition is increased when chitosan microparticles are introduced to the system prior to imposing a small electric field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Paton, J. C., & Paton, A. W. (1998). Pathogenesis and diagnosis of shiga toxin-producing Escherichia coli infections. Clinical Microbiology Reviews, 11, 450− +.

    Google Scholar 

  2. Chung, Y. C., & Chen, C. Y. (2008). Antibacterial characteristics and activity of acid-soluble chitosan. Bioresource Technology, 99, 2806–2814.

    Article  CAS  Google Scholar 

  3. Li, B., Wang, X., Chen, R., Huangfu, W. G., & Xie, G. L. (2008). Antibacterial activity of chitosan solution against Xanthomonas pathogenic bacteria isolated from Euphorbia pulcherrima. Carbohydrate Polymers, 72, 287–292.

    Article  CAS  Google Scholar 

  4. Liu, X. F., Guan, Y. L., Yang, D. Z., Li, Z., & De Yao, K. (2001). Antibacterial action of chitosan and carboxymethylated chitosan. Journal of Applied Polymer Science, 79, 1324–1335.

    Article  CAS  Google Scholar 

  5. Helander, I. M., Nurmiaho-Lassila, E. L., Ahvenainen, R., Rhoades, J., & Roller, S. (2001). Chitosan disrupts the barrier properties of the outer membrane of gram-negative bacteria. International Journal of Food Microbiology, 71, 235–244.

    Article  CAS  Google Scholar 

  6. Liu, H., Du, Y. M., Wang, X. H., & Sun, L. P. (2004). Chitosan kills bacteria through cell membrane damage. International Journal of Food Microbiology, 95, 147–155.

    Article  CAS  Google Scholar 

  7. Qi, L. F., Xu, Z. R., Jiang, X., Hu, C. H., & Zou, X. F. (2004). Preparation and antibacterial activity of chitosan nanoparticles. Carbohydrate Research, 339, 2693–2700.

    Article  CAS  Google Scholar 

  8. Tsai, G. J., & Su, W. H. (1999). Antibacterial activity of shrimp chitosan against Escherichia coli. Journal of Food Protection, 62, 239–243.

    CAS  Google Scholar 

  9. Chung, Y. C., Su, Y. P., Chen, C. C., Jia, G., Wang, H. I., Wu, J. C. G., et al. (2004). Relationship between antibacterial activity of chitosan and surface characteristics of cell wall. Acta Pharmacologica Sinica, 25, 932–936.

    CAS  Google Scholar 

  10. Boucard, N., Viton, C., Agay, D., Mari, E., Roger, T., Chancerelle, Y., et al. (2007). The use of physical hydrogels of chitosan for skin regeneration following third-degree burns. Biomaterials, 28, 3478–3488.

    Article  CAS  Google Scholar 

  11. Deng, C. M., He, L. Z., Zhao, M., Yang, D., & Liu, Y. (2007). Biological properties of the chitosan-gelatin sponge wound dressing. Carbohydrate Polymers, 69, 583–589.

    Article  CAS  Google Scholar 

  12. Kanatt, S. R., Chander, R., & Sharma, A. (2008). Chitosan glucose complex—a novel food preservative. Food Chemistry, 106, 521–528.

    Article  CAS  Google Scholar 

  13. Qin, C. Q., Li, H. R., Xiao, Q., Liu, Y., Zhu, J. C., & Du, Y. M. (2006). Water-solubility of chitosan and its antimicrobial activity. Carbohydrate Polymers, 63, 367–374.

    Article  CAS  Google Scholar 

  14. Chen, J. P., Chang, G. Y., & Chen, J. K. (2008). Electrospun collagen/chitosan nanofibrous membrane as wound dressing. Colloids and Surfaces A-Physicochemical and Engineering Aspects, 313(183–188), 704.

    Google Scholar 

  15. Haidar, Z. S., Hamdy, R. C., & Tabrizian, M. (2008). Protein release kinetics for core-shell hybrid nanoparticles based on the layer-by-layer assembly of alginate and chitosan on liposomes. Biomaterials, 29, 1207–1215.

    Article  CAS  Google Scholar 

  16. Zhang, H., Oh, M., Allen, C., & Kumacheva, E. (2004). Monodisperse chitosan nanoparticles for mucosal drug delivery. Biomacromolecules, 5, 2461–2468.

    Article  CAS  Google Scholar 

  17. Tien, H. T. (Ed.). (1974). Bilayer lipid membranes (BLM): theory and practice. New York: Dekker.

    Google Scholar 

  18. Cole, K. S. (1972). Membranes, ions and impulses. Berkeley: California Press.

    Google Scholar 

  19. Tsong, T. Y. (1991). Electroporation of cell-membranes. Biophysical Journal, 60, 297–306.

    Article  CAS  Google Scholar 

  20. Alegre, M. T., Rodriguez, M. C., & Mesas, J. M. (2004). Transformation of Lactobacillus plantarum by electroporation with in vitro modified plasmid DNA. FEMS Microbiology Letters, 241, 73–77.

    Article  Google Scholar 

  21. Pothakamury, U. R., Monsalvegonzalez, A., Barbosacanovas, G. V., & Swanson, B. G. (1995). Inactivation of Escherichia coli and Staphylococcus aureus in model foods by pulsed electric-field technology. Food Research International, 28, 167–171.

    Article  Google Scholar 

  22. Wang, H. Y., Bhunia, A. K., & Lu, C. (2006). A microfluidic flow-through device for high throughput electrical lysis of bacterial cells based on continuous dc voltage. Biosensors & Bioelectronics, 22, 582–588.

    Article  CAS  Google Scholar 

  23. Mosqueda-Melgar, J., Raybaudi-Massilia, R. M., & Martin-Belloso, O. (2008). Combination of high-intensity pulsed electric fields with natural antimicrobials to inactivate pathogenic microorganisms and extend the shelf-life of melon and watermelon juices. Food Microbiology, 25, 479–491.

    Article  CAS  Google Scholar 

  24. Leistner, L. (2000). Basic aspects of food preservation by hurdle technology. International Journal of Food Microbiology, 55, 181–186.

    Article  CAS  Google Scholar 

  25. Malinowska-Panczyk, E., Kolodziejska, I., Murawska, D., & Wolosewicz, G. (2009). The combined effect of moderate pressure and chitosan on Escherichia coli and Staphylococcus aureus cells suspended in a buffer and on natural microflora of apple juice and minced pork. Food Technology, Biotechnology, 47, 202–209.

    CAS  Google Scholar 

  26. Potara, M., Jakab, E., Damert, A., Popescu, O., Canpean, V., & Astilean, S. (2011). Synergistic antibacterial activity of chitosan-silver nanocomposites on Staphylococcus aureus. Nanotechnology, 22.

  27. Ross, A. I. V., Griffiths, M. W., Mittal, G. S., & Deeth, H. C. (2003). Combining nonthermal technologies to control foodborne microorganisms. International Journal of Food Microbiology, 89, 125–138.

    Article  Google Scholar 

  28. Larsen, M. U., Seward, M., Tripathi, A., & Shapley, N. C. (2009). Biocompatible nanoparticles trigger rapid bacteria clustering. Biotechnology Progress, 25(4), 1094–1102.

    Article  CAS  Google Scholar 

  29. Renault, F., Sancey, B., Badot, P. M., & Crini, G. (2009). Chitosan for coagulation/flocculation processes—an eco-friendly approach. European Polymer Journal, 45, 1337–1348.

    Article  CAS  Google Scholar 

  30. Strand, S. P., Nordengen, T., & Ostgaard, K. (2002). Efficiency of chitosans applied for flocculation of different bacteria. Water Research, 36, 4745–4752.

    Article  CAS  Google Scholar 

  31. Hughes, J., Ramsden, D. K., & Symes, K. C. (1990). The flocculation of bacteria using cationic synthetic flocculants and chitosan. Biotechnology Techniques, 4, 55–60.

    Article  CAS  Google Scholar 

  32. Rojas-Chapana, J. A., Correa-Duarte, M. A., Ren, Z. F., Kempa, K., & Giersig, M. (2004). Enhanced introduction of gold nanoparticles into vital Acidothiobacillus ferrooxidans by carbon nanotube-based microwave electroporation. Nano Letters, 4, 985–988.

    Article  CAS  Google Scholar 

  33. Fernandes, J. C., Tavaria, F. K., Soares, J. C., Ramos, O. S., Monteiro, M. J., Pintado, M. E., et al. (2008). Antimicrobial effects of chitosans and chitooligosaccharides, upon Staphylococcus aureus and Escherichia coli, in food model systems. Food Microbiology, 25, 922–928.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge that this project was supported by National Research Initiative Grant no. 2007-35603-17738, from the USDA Cooperative State Research, Education, and Extension Service Nanoscale Science and Engineering for Agriculture and Food Systems program and Agriculture and Food Research Initiative Grant no. 2011-65210-20046, from the USDA-National Institute of Food and Agriculture Nanoscale Science and Nanotechnology program. Furthermore, this work has used shared experimental facilities that are supported primarily by the MRSEC Program of the National Science Foundation under the award number DMR-0213574 and by the New York State Office of Science, Technology and Academic Research (NYSTAR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anubhav Tripathi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Azadi, G., Seward, M., Larsen, M.U. et al. Improved Antimicrobial Potency through Synergistic Action of Chitosan Microparticles and Low Electric Field. Appl Biochem Biotechnol 168, 531–541 (2012). https://doi.org/10.1007/s12010-012-9794-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-012-9794-5

Keywords

Navigation