Skip to main content
Log in

Effects of Inoculum Physiological Stage on the Growth Characteristics of Chlorella sorokiniana Cultivated Under Different CO2 Concentrations

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

In order to maximize microalgae biomass production and reduce its overall costs, it is important to optimize inoculum conditions based on its physical and physiological characteristics. Chlorella sorokiniana cultures inoculated with inoculum at three different physiological stages (lag, exponential, and stationary) diluted to the same optical density were cultivated for 12 days under three different CO2 concentrations (0.038, 5, or 10 % CO2 v/v) and growth pattern and biomass production was observed. Samples inoculated with lag phase inoculum supplied with 5 % CO2 achieved the maximum biomass production, whereas samples supplied with 0.038 % CO2 never reached exponential growth. The better growth of samples inoculated with lag phase inoculum was attributed to its increased number of cells compared to the other two inocula.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. EPA (2011) Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990–2009. Washington: DC, USA.

  2. Brune, D. E., Lundquist, T. J., & Benemann, J. R. (2009). Journal of Environmental Engineering, 135(11), 1136–1144.

    Article  CAS  Google Scholar 

  3. Chinnasamy, S., Bhatnagar, A., Hunt, R. W., & Das, K. C. (2010). Bioresource Technology, 101(9), 3097–3105.

    Article  CAS  Google Scholar 

  4. U.S. DOE (2010) National Algal Biofuels Technology Roadmap. U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Biomass Program. College Park, Maryland, USA.

  5. Schenk, P. M., et al. (2008). Bioenergy Research, 1(1), 20–43.

    Article  Google Scholar 

  6. Kunjapur, A. M., & Eldridge, R. B. (2010). Industrial and Engineering Chemistry Research, 49(8), 3516–3526.

    Article  CAS  Google Scholar 

  7. Yewalkar, S., Li, B., Posarac, D., & Duff, S. (2011). Energy & Fuels, 25(4), 1900–1905.

    Article  CAS  Google Scholar 

  8. Keffer, J. E., & Kleinheinz, G. T. (2002). Journal of Industrial Microbiology and Biotechnology, 29(5), 275–280.

    Article  CAS  Google Scholar 

  9. Li, Y. C., et al. (2011). Bioresource Technology, 102(8), 5138–5144.

    Article  CAS  Google Scholar 

  10. de Morais, M. G., & Costa, J. A. V. (2007). Energy Conversion and Management, 48(7), 2169–2173.

    Article  Google Scholar 

  11. de Morais, M. G., & Costa, J. A. V. (2007). Biotechnology Letters, 29(9), 1349–1352.

    Article  CAS  Google Scholar 

  12. Sung, K. D., Lee, J. S., Shin, C. S., Park, S. C., & Choi, M. J. (1999). Bioresource Technology, 68(3), 269–273.

    Article  CAS  Google Scholar 

  13. Porra, R. J., Thompson, W. A., & Kriedemann, P. E. (1989). Biochimica et Biophysica Acta, 975(3), 384–394.

    Article  CAS  Google Scholar 

  14. Becker, E. W. (1994). Microalgae: biotechnology and microbiology. New York: Cambridge Studies in Biotechnology.

    Google Scholar 

  15. Stumm, W. (1996). Aquatic chemistry chemical equilibria and rates in natural waters. New York: Wiley.

    Google Scholar 

  16. Khalil, Z. I., Asker, M. M. S., El-Sayed, S., & Kobbia, I. A. (2010). World Journal of Microbiology and Biotechnology, 26(7), 1225–1231.

    Article  CAS  Google Scholar 

  17. Hirata, S., Hayashitani, M., Taya, M., & Tone, S. (1996). Journal of Fermentation and Bioengineering, 81(5), 470–472.

    Article  CAS  Google Scholar 

  18. Putt, R., Singh, M., Chinnasamy, S., & Das, K. C. (2011). Bioresource Technology, 102(3), 3240–3245.

    Article  CAS  Google Scholar 

  19. Ketchum, B. H., Lillick, L., & Redfield, A. C. (1949). Journal of Cellular and Comparative Physiology, 33(3), 267–279.

    Article  CAS  Google Scholar 

  20. Ketchum, B. H., & Redfield, A. C. (1949). Journal of Cellular and Comparative Physiology, 33(3), 281–299.

    Article  CAS  Google Scholar 

  21. Benamotz, A., & Gilboa, A. (1980). Marine Ecology Progress Series, 2(2), 157–161.

    Article  CAS  Google Scholar 

  22. Agrawal, S. C. M. (2007). Folia Microbiologica, 52(4), 399–406.

    Article  CAS  Google Scholar 

  23. Cerveny, J., Setlik, I., Trtilek, M., & Nedbal, L. (2009). Engineering in Life Science, 9(3), 247–253.

    Article  CAS  Google Scholar 

  24. Carbon Dioxide-Carbonic Acid Equilibrium 2004. Available from: http://ion.chem.usu.edu/~sbialkow/Classes/3600/Overheads/Carbonate/CO2.html. Accessed 14 Nov 2011.

Download references

Acknowledgments

This work was partially funded by grants and subcontracts from the US DOE and the State of Georgia. The authors acknowledge the assistance of other members of the Biorefining and Carbon Cycling Program's Algae-Biofuels Lab in analytical analysis.

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to Keshav C. Das.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mattos, E.R., Singh, M., Cabrera, M.L. et al. Effects of Inoculum Physiological Stage on the Growth Characteristics of Chlorella sorokiniana Cultivated Under Different CO2 Concentrations. Appl Biochem Biotechnol 168, 519–530 (2012). https://doi.org/10.1007/s12010-012-9793-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-012-9793-6

Keywords

Navigation