Skip to main content
Log in

Adaptation of Glycolysis and Growth to Acetate in Sporolactobacillus sp. Y2-8

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Exogenous addition of a low concentration of acetate (2 g/L sodium acetate) effectively decreased acetic acid excretion and lowered the ATP content in Sporolactobacillus sp. Y2-8 without any growth defect although the acetate could not be utilized at an initial glucose concentration of 150 g/L. This induced an enhanced glycolytic flux with increased specific activities of hexokinase and phosphofructokinase, probably to compensate for the lowered efficiency of ATP production. However, with increasing concentrations (5 g/L sodium acetate), acetate was utilized first before being produced again, causing a growth lag at the transition. Glucose consumption was also reduced at high acetate concentrations, resulting in decreased d-lactic acid production. These results demonstrate that acetate plays a significant role in regulating glycolysis and growth of Sporolactobacillus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Wolfe, A. J. (2005). The acetate switch. Microbiology and Molecular Biology Reviews, 69, 12–50.

    Article  CAS  Google Scholar 

  2. El-Mansi, M. (2004). Flux to acetate and lactate excretions in industrial fermentations: physiological and biochemical implications. Journal of Industrial Microbiology and Biotechnology, 31, 295–300.

    Article  CAS  Google Scholar 

  3. Valgepea, K., Adamberg, K., Nahku, R., Lahtvee, P. J., Arike, L., & Vilu, R. (2010). Systems biology approach reveals that overflow metabolism of acetate in Escherichia coli is triggered by carbon catabolite repression of acetyl-CoA synthetase. BMC Systems Biology, 4, 166.

    Article  CAS  Google Scholar 

  4. Wolfe, A. J. (2010). Physiologically relevant small phosphodonors link metabolism to signal transduction. Current Opinion in Microbiology, 13, 204–209.

    Article  CAS  Google Scholar 

  5. Lee, T. Y., Makino, K., Shinagawa, H., & Nakata, A. (1990). Overproduction of acetate kinase activates the phosphate regulon in the absence of the phoR and phoM functions in Escherichia coli. Journal of Bacteriology, 172, 2245–2249.

    CAS  Google Scholar 

  6. Brown, T. D. K., Jones-Mortimer, M. C., & Kornberg, H. L. (1977). The enzymic interconversion of acetate and acetyl-coenzyme A in Escherichia coli. Journal of General Microbiology, 102, 327–336.

    Article  CAS  Google Scholar 

  7. Phue, J. N., Lee, S. J., Kaufman, J. B., Negrete, A., & Shiloach, J. (2010). Acetate accumulation through alternative metabolic pathways in ackA - pta - poxB - triple mutant in E coli B (BL21). Biotechnology Letters, 32, 1897–1903.

    Article  CAS  Google Scholar 

  8. Sooan, S., Chang, D. E., & Pan, J. G. (2009). Acetate consumption activity directly determines the level of acetate accumulation during Escherichia coli W3110 growth. Journal of Microbiology and Biotechnology, 19, 1127–1134.

    Google Scholar 

  9. McCleary, W. R., Stock, J. B., & Ninfa, A. J. (1993). Is acetyl phosphate a global signal in Escherichia coli. Journal of Bacteriology, 175, 2793–2798.

    CAS  Google Scholar 

  10. Zhou, S., Causey, T. B., Hasona, A., Shanmugam, K. T., & Ingram, L. O. (2003). Production of optically pure D-Lactic acid in mineral salts medium by metabolically engineered Escherichia coli W3110. Applied and Environmental Microbiology, 69, 399–407.

    Article  CAS  Google Scholar 

  11. Utrilla, J., Gosset, G., & Martinez, A. (2009). ATP limitation in a pyruvate formate lyase mutant of Escherichia coli MG1655 increases glycolytic flux to d-lactate. Journal of Industrial Microbiology and Biotechnology, 36, 1057–1062.

    Article  CAS  Google Scholar 

  12. Alsaker, K. V., Paredes, C., & Papoutsakis, E. T. (2010). Metabolite stress and tolerance in the production of biofuels and chemicals: gene-expression-based systems analysis of butanol, butyrate, and acetate stresses in the anaerobe Clostridium acetobutylicum. Biotechnology and Bioengineering, 105, 1131–1147.

    CAS  Google Scholar 

  13. Kirkpatrick, C., Maurer, L. M. N., Oyelakin, E., Yoncheva, Y. N., Maurer, R., & Slonczewski, J. L. (2001). Acetate and formate stress: opposite responses in the proteome of Escherichia coli. Journal of Bacteriology, 183, 6466–6477.

    Article  CAS  Google Scholar 

  14. Oh, M. K., Rohlin, L., Kao, K. C., & Liao, J. C. (2002). Global expression profiling of acetate-grown Escherichia coli. Applied and Environmental Microbiology, 277, 13175–13183.

    CAS  Google Scholar 

  15. Oh, M. K., Cha, M. J., Lee, S. G., Rohlin, L., & Liao, J. C. (2006). Dynamic gene expression profiling of Escherichia coli in carbon source transition from glucose to acetate. Journal Microbiology and Biotechnology, 16, 543–549.

    CAS  Google Scholar 

  16. Xu, T. T., Bai, Z. Z., Wang, L. J., & He, B. F. (2010). Breeding of d()-lactic acid high producing strain by low-energy ion implantation and preliminary analysis of related metabolism. Applied Biochemistry and Biotechnology, 160, 314–321.

    Article  CAS  Google Scholar 

  17. Alves, A. M., Euverink, G. J., Bibb, M. J., & Dijkhuizen, L. (1997). Identification of ATP-dependent phosphofructokinase as a regulatory step in the glycolytic pathway of the actinomycete Streptomyces coelicolor A3 (2). Applied and Environmental Microbiology, 63, 956–961.

    CAS  Google Scholar 

  18. Zhu, J. F., & Kazuyuki, S. (2005). Effect of a single-gene knockout on the metabolic regulation in Escherichia coli for d-lactate production under microaerobic condition. Metabolic Engineering, 7, 104–115.

    Article  CAS  Google Scholar 

  19. Vanella, A., Avola, R., Condorell, D. F., Campisi, A., Costa, A., Giuffrida Stella, A. M., et al. (1989). Antioxidant enzymatic activities and resistance to oxidative stress in primary and subcultured rat astroglial cells. International Journal of Developmental Neuroscience, 7, 233–239.

    Article  CAS  Google Scholar 

  20. Zhao, B., Wang, L., Li, F., Hua, D., Ma, C., Ma, Y., et al. (2010). Kinetics of d-lactic acid production by Sporolactobacillus sp strain CASD using repeated batch fermentation. Bioresource Technology, 101, 6499–6505.

    Article  CAS  Google Scholar 

  21. Larsson, C., Nilsson, A., Blomberg, A., & Gustafsson, L. (1997). Glycolytic flux is conditionally correlated with ATP concentration in Saccharomyces cerevisiae: a chemostat study under carbonor nitrogen-limiting conditions. Journal of Bacteriology, 179, 7243–7250.

    CAS  Google Scholar 

  22. Somsen, O. J. G., Hoeben, M. A., Esgalhado, E., Snoep, J. L., Visser, D., Van der Heijden, R. T. J. M., et al. (2002). Glucose and the ATP paradox in yeast. Biochemistry Journal, 352, 593–599.

    Article  Google Scholar 

  23. Aledo, J. C., Jiménez-Rivérez, S., Cuesta-Munoz, A., & Romero, J. M. (2008). The role of metabolic memory in the ATP paradox and energy homeostasis. FEBS Journal, 275, 5332–5342.

    Article  CAS  Google Scholar 

  24. Koebmann, B. J., Westerhoff, H. V., Snoep, J. L., Nilsson, D., & Jensen, P. R. (2002). The glycolytic flux in Escherichia coli is controlled by the demand for ATP. Journal of Bacteriology, 184, 3909–3916.

    Article  CAS  Google Scholar 

  25. Liu, L. M., Li, Y., Li, H. Z., & Chen, J. (2005). Effect of oxidative phosphorylation inhibitors on the glycolytic flux in Torulopsis glabrata. Progress in Biochemistry and Biophysics, 32, 251–257.

    CAS  Google Scholar 

  26. Larsson, C., PaÊhlman, I., & Gustafsson, L. (2000). The importance of ATP as a regulator of glycolytic flux in Saccharomyces cerevisiae. Yeast, 16, 797–809.

    Article  CAS  Google Scholar 

  27. Zhu, J., & Zhimizu, K. (2004). The effect of pfl gene knockout on the metabolism for optically pure d-lactate production by Escherichia coli. Applied Microbiology and Biotechnology, 64, 367–375.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the National Outstanding Youth Foundation of China (Grant No.: 21025625); the National High-Tech Research and Development Program of China (863) (Grant No.: 2012AA021203); the National Basic Research Program of China (973) (Grant No.: 2011CBA00806); the National Natural Science Foundation of China, Youth Program (Grant No.:21106070); the Changjiang Scholars and Innovative in University (PCSIRT), and Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanjie Ying.

Additional information

Dong Liu and Yong Chen equally contributed to this study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, D., Chen, Y., Li, A. et al. Adaptation of Glycolysis and Growth to Acetate in Sporolactobacillus sp. Y2-8. Appl Biochem Biotechnol 168, 455–463 (2012). https://doi.org/10.1007/s12010-012-9789-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-012-9789-2

Keywords

Navigation