Skip to main content
Log in

Effect of Pretreatment Severity on Accumulation of Major Degradation Products from Dilute Acid Pretreated Corn Stover and Subsequent Inhibition of Enzymatic Hydrolysis of Cellulose

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The concept of reaction severity, which combines residence time and temperature, is often used in the pulp and paper and biorefining industries. The influence of corn stover pretreatment severity on yield of sugar and major degradation products and subsequent effects on enzymatic cellulose hydrolysis was investigated. The pretreatment residence time and temperature, combined into the severity factor (Log R o), were varied with constant acid concentration. With increasing severity, increasing concentrations of furfural and 5-hydroxymethylfurfural (5-HMF) coincided with decreasing yields of oligosaccharides. With further increase in severity factor, the concentrations of furans decreased, while the formation of formic acid and lactic acid increased. For example, from severity 3.87 to 4.32, xylose decreased from 6.39 to 5.26 mg/mL, while furfural increased from 1.04 to 1.33 mg/mL; as the severity was further increased to 4.42, furfural diminished to 1.23 mg/mL as formate rose from 0.62 to 1.83 mg/mL. The effects of dilute acid hydrolyzate, acetic acid, and lignin, in particular, on enzymatic hydrolysis were investigated with a rapid microassay method. The microplate method gave considerable time and cost savings compared to the traditional assay protocol, and it is applicable to a broad range of lignocellulosic substrates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Perlack, R. D., et al. (2005). Biomass as feedstock for a bioenergy and bioproducts industry: the technical feasibility of a billion-ton annual supply. US Department of Energy and US department of Agriculture Report.

  2. Xing, R., Subrahmanyam, A. V., Olcay, H., Qi, W., Malone, M. F., van Walsum, G. P., Pendse, H., & Huber, G. W. (2010). Green Chemistry, 12, 1933–1946.

    Article  CAS  Google Scholar 

  3. Um, B. H., & Hanley, T. R. (2008). Journal of Microbiology and Biotechnology, 18(7), 1257–1265.

    CAS  Google Scholar 

  4. García-Aparicio, M. P., Ballesteros, I., González, A., Oliva, J. M., Ballesteros, M., & Negro, M. J. (2006). Applied Biochemistry and Biotechnology, 129, 278–288.

    Article  Google Scholar 

  5. Yourchisin, D., & van Walsum, G. P. (2004). Applied Biochemistry and Biotechnology, 115(1–3), 1073–1086.

    Article  Google Scholar 

  6. van Walsum, G. P., & Shi, H. (2004). Bioresource Technology, 93(3), 217–226.

    Article  Google Scholar 

  7. Tanaka, M., Ikesaka, M., Matsuno, R., & Converse, A. O. (1998). Biotechnology and Bioengineering, 32(5), 698–706.

    Article  Google Scholar 

  8. Weiss, N. D., Nagle, N. J., Tucker, M. P., & Elander, R. T. (2009). Applied Biochemistry and Biotechnology, 155, 418–428.

    Article  CAS  Google Scholar 

  9. Um, B. H., & van Walsum, G. P. (2010). Applied Biochemistry and Biotechnology, 161, 432–447.

    Article  CAS  Google Scholar 

  10. Kim, S. B., Um, B. H., & Park, S. C. (2001). Applied Biochemistry and Biotechnology, 91/93, 81–94.

    Article  Google Scholar 

  11. van Walsum, G. P. (2001). Applied Biochemistry and Biotechnology, 91–93, 317–329.

    Article  Google Scholar 

  12. van Walsum, G. P., Allen, S. G., Laser, M. S., Spencer, M. J., Antal, M. J., Jr., & Lynd, L. R. (1996). Applied Biochemistry and Biotechnology, 57/58, 157–170.

    Article  Google Scholar 

  13. Du, B. W., Sharma, L. N., Becker, C., Chen, S. F., Mowery, R. A., van Walsum, G. P., & Chambliss, C. K. (2010). Biotechnology and Bioengineering, 107(3), 430–440.

    Article  CAS  Google Scholar 

  14. Um, B. H., & van Walsum, G. P. (2009). Applied Biochemistry and Biotechnology, 153, 127–138.

    Article  CAS  Google Scholar 

  15. Chen, S. F., Mowery, R. A., Castleberry, V. A., van Walsum, G. P., & Chambliss, C. K. (2006). Journal of Chromatography A, 1104, 54–61.

    Article  CAS  Google Scholar 

  16. Wyman, C. E., Dale, B. E., Elander, R. T., Holtzapple, M., Ladisch, M. R., & Lee, Y. Y. (2005). Bioresource Technology, 96, 1959–1966.

    Article  CAS  Google Scholar 

  17. Shevchenko, S. M., Beatson, R. P., & Saddler, J. N. (1999). Applied Biochemistry and Biotechnology, 79, 867–976.

    Article  Google Scholar 

  18. Mosier, N., Wyman, C., Dale, B., Elander, R., Lee, Y. Y., Holtzapple, M., & Ladisch, M. (2005). Bioresource Technology, 96, 673–686.

    Article  CAS  Google Scholar 

  19. Ulbricht, R. J., Northup, S. J., & Thomas, J. A. (1984). Fundamental and Applied Toxicology, 4, 843–853.

    Article  CAS  Google Scholar 

  20. Jeong, T. S., Um, B. H., Kim, J. S., & Oh, K. K. (2010). Applied Biochemistry and Biotechnology, 161, 22–33.

    Article  CAS  Google Scholar 

  21. Tengborg, C., Stenberg, K., Galbe, M., Zacchi, G., Larsson, S., Palmqvist, E., & Hahn-Hägerdal, B. (1998). Applied Biochemistry and Biotechnology, 70–72, 3–15.

  22. Chum, H. L., Johnson, D. K., Black, S. K., & Overend, R. P. (1990). Applied Biochemistry and Biotechnology, 24/25, 1–14.

    Article  Google Scholar 

  23. Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., & Tmpleton, D. (2008). Determination of structural carbohydrates and lignin in biomass. National Renewable Energy Laboratory NREL/TP-510-42681 ed. Golden, CO.

  24. Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., & Tmpleton, D. (2006). Determination of sugars, byproducts, and degradation products in liquid fraction process samples. National Renewable Energy Laboratory NREL/TP-510-42623 ed. Golden, CO.

  25. Selig, M., Weiss, N., & Ji, Y. (2008). Enzymatic saccharification of lignocellulosic biomass. National Renewable Energy Laboratory NREL/TP-510-42629 ed. Golden, CO.

Download references

Acknowledgment

This work was funded by the United States Department of Agriculture (USDA)-USDA-CSREES-NRI, # 2005-35504-16335.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Peter van Walsum.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Um, BH., van Walsum, G.P. Effect of Pretreatment Severity on Accumulation of Major Degradation Products from Dilute Acid Pretreated Corn Stover and Subsequent Inhibition of Enzymatic Hydrolysis of Cellulose. Appl Biochem Biotechnol 168, 406–420 (2012). https://doi.org/10.1007/s12010-012-9784-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-012-9784-7

Keywords

Navigation