Skip to main content
Log in

Lipase-Catalyzed Preparation of Diacylglycerol-Enriched Oil from High-Acid Rice Bran Oil in Solvent-Free System

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The ability of immobilized lipase from Rhizomucor miehei (Lipozyme RM IM) to catalyze the reaction of high-acid rice bran oil (RBO) and monoglyceride (MG) for diacylglycerol-enriched rice bran oil (RBO-DG) preparation was investigated. The effects of substrate ratio, reaction temperature, time, and enzyme load on the respective content of free fatty acid (FFA) and DG in the final RBO-DG products was investigated. Enzyme screening on the reaction was also investigated. Response surface methodology (RSM) was used to optimize the effects of the reaction temperature (50–70 °C), the enzyme load (2–6 %; relative to the weight of total substrates), and the reaction time (4–8 h) on the respective content of FFA and DG. Validation of the RSM model was verified by the good agreement between the experimental and the predicted values. The optimum preparation conditions were as follows: MG/RBO, 0.25; temperature, 56 °C; enzyme load, 4.77 %; and reaction time, 5.75 h. Under the suggested conditions, the respective content of FFA and DG was 0.28 and 27.98 %, respectively. Repeated reaction tests indicated that Lipozyme RM IM could be used nine times under the optimum conditions with 90 % of its original catalytic activity still retained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. D’Alonzo, R. P., Kozarek, W. J., & Wade, R. L. (1982). Glyceride composition of processed fats and oils as determined by glass capillary gas chromatography. Journal of the American Oil Chemists’ Society, 59, 292–295.

    Article  Google Scholar 

  2. Meng, X. H., Zou, D. Y., Shi, Z. P., Duan, Z. Y., & Mao, Z. G. (2004). Dietary diacylglycerol prevents high-fat diet-induced lipid accumulation in rat liver and abdominal adipose tissue. Lipids, 39, 37–41.

    Article  CAS  Google Scholar 

  3. Maki, K. C., Davidson, M. H., Tsushima, R., Matsuo, N., Tokimitsu, I., Umporowicz, D. M., et al. (2002). Consumption of diacylglycerol oil as part of a reduced-energy diet enhances loss of body weight and fat in comparison with consumption of a triacylglycerol control oil. American Journal of Clinical Nutrition, 76, 1230–1236.

    CAS  Google Scholar 

  4. Yamamoto, T., Yamaguchi, H., Miki, H., Kitamura, S., Nakada, Y., Aicher, T. D., et al. (2011). A novel coenzyme A: diacylglycerol acyltransferase 1 inhibitor stimulates lipid metabolism in muscle and lowers weight in animal models of obesity. European Journal of Lipid Science and Technology, 650, 663–672.

    CAS  Google Scholar 

  5. Masanobu, H., Youko, S., Rika, Y., Hideto, T., Daisuke, S., Shinichi, M., et al. (2011). The short-term effect of diacylglycerol oil consumption on total and dietary fat utilization in overweight women. Obesity, 19, 536–540.

    Article  Google Scholar 

  6. Murase, T., Mizuno, T., & Omachi, T. (2001). Dietary diacylglycerol suppresses high fat and high sucrose diet induced body fat accumulation in C57BL/6J mice. Journal of Lipid Research, 42, 372–378.

    CAS  Google Scholar 

  7. Kristensena, J. B., Xu, X., & Mu, H. (2005). Diacylglycerol synthesis by enzymatic glycerolysis: screening of commercially available lipases. Journal of the American Oil Chemists’ Society, 82, 329–334.

    Article  Google Scholar 

  8. Jin, J., Li, D., Zhu, X. M., Adhikari, P., Lee, K. T., & Lee, J. H. (2011). Production of diacylglycerols from glycerol monooleate and ethyl oleate through free and immobilized lipase-catalyzed consecutive reactions. New Biotechnology, 28, 190–195.

    Article  CAS  Google Scholar 

  9. Babicz, I., Leite, S. G. F., de Souza, R. O. M. A., & Antunes, O. A. C. (2010). Lipase-catalyzed diacylglycerol production under sonochemical irradiation. Ultrasoics Sonochemistry, 17, 4–6.

    Article  CAS  Google Scholar 

  10. Zhong, N., Li, L., Xu, X., Cheong, L.-Z., Zhao, X., & Li, B. (2010). Production of diacylglycerols through low-temperature chemical glycerolysis. Food Chemistry, 122, 228–232.

    Article  CAS  Google Scholar 

  11. Yeoh, C. M., Choong, T. S. Y. L., Abdullah, C., Yunus, R., & Siew, W. L. (2009). Production of diacylglycerols through low-temperature chemical glycerolysis. European Journal of Lipid Science and Technology, 111, 599–606.

    Article  CAS  Google Scholar 

  12. Vu, P. L., Park, R. K., Lee, Y. J., Kim, Y. M., Nam, H. Y., Lee, J. H., et al. (2007). Two-Step production of oil Enriched in conjugated linoleic acids and diacylglycerol. Journal of the American Oil Chemists’ Society, 84, 123–128.

    Article  CAS  Google Scholar 

  13. De, B. K., & Bhattacharyya, D. K. (1999). Deacidification of high-acid rice bran oil by reesterification with monoglyceride. Journal of the American Oil Chemists’ Society, 76, 1243–1246.

    Article  CAS  Google Scholar 

  14. Lee, J. H., Yu, F., Vu, P. L., Choi, M. S., Akoh, C. C., & Lee, K. T. (2007). Compositional study on rice bran oil after lipase-catalyzed glycerolysis and solvent fractionations. Journal of Food Science, 72, 163–167.

    Article  Google Scholar 

  15. Sengupta, R., & Bhattacharyya, D. K. (1996). Effect of monoglycerides on enzymatic deacidification of rice bran oil. Journal of Oil Technology Association of India, 28, 125–130.

    CAS  Google Scholar 

  16. Kosugi, Y., & Azuma, N. (1994). Continuous and consecutive conversion of free fatty acid in rice bran oil to triacylglycerol using immobilized lipase. Applied Microbiology and Biotechnology, 41, 407–412.

    Article  CAS  Google Scholar 

  17. Nandi, S., Gangopadhyay, S., & Ghosh, S. (2008). Lipase catalyzed synthesis of neutral glycerides rich in micronutrients from rice bran oil fatty acid distillate. Journal of Oleo Science, 57(11), 599–603.

    Article  CAS  Google Scholar 

  18. Ju, H. Y., Too, J. R., Chang, C., & Shieh, C. J. (2009). Optimal alpha-chymotrypsin-catalyzed synthesis of N-Ac-Phe-Gly-NH (2). Journal of Agricultural and Food Chemistry, 57, 403–408.

    Article  CAS  Google Scholar 

  19. Cheong, L. Z., Tan, C. P., Long, K., Yusoff, M. S. A., Arifin, N., Lo, S. K., et al. (2007). Production of a diacylglycerol-enriched palm olein using lipase-catalyzed partial hydrolysis: Optimzation using response surface methodology. Food Chemistry, 105, 1614–1622.

    Article  CAS  Google Scholar 

  20. Jin, Q. Z., Zou, X. Q., Shan, L., Wang, X. G., & Qiu, A. Y. (2008). Beta-D-glucosidase-catalyzed deglucosidation of phenylpropanoid amides of 5-hydroxytryptamine glucoside in safflower seed extracts optimized by response surface methodology. Journal of Agricultural and Food Chemistry, 58, 155–160.

    Article  Google Scholar 

  21. Reslow, M., Adlercreutz, P., & Mattiasson, R. (1988). On the importance of the support materials for bioorganic synthesis. European Journal of Biochemistry, 172, 573–578.

    Article  CAS  Google Scholar 

  22. Otero, C., Pastor, E., & Fernandez, V. M. (1990). Influence of the support on the reaction course of tributyrin hydrolysis catalyzed by soluble and immobilized lipases. Applied Biochemistry and Biotechnology, 23, 237–247.

    Article  CAS  Google Scholar 

  23. Rosu, R., Yasui, M., & Iwasaki, Y. (1999). Enzymatic synthesis of symmetrical 1,3-diacylglycerols by direct esterification of glycerol in solvent-free system. Journal of the American Oil Chemists’ Society, 76, 839–843.

    Article  CAS  Google Scholar 

  24. Matori, M., Asahara, T., & Ota, Y. (1991). Positional specificity of microbial lipases. Journal of Fermentation and Bioengineering, 72, 397–398.

    Article  CAS  Google Scholar 

  25. Taguchi, H., Watanabe, H., & Onizawa, K. (2000). Double-blind controlled study on the effects of diacylglycerol on postprandial serum and chylomicron triacylglycerol responses in healthy humans. Journal of the American College of Nutrition, 19, 789–796.

    CAS  Google Scholar 

  26. Li, Y., Cui, F., Liu, Z., Xu, Y., & Zhao, H. (2007). Improvement of xylanase production by Penicillium oxalicum ZH-30 using response surface methodology. Enzyme and Microbial Technology, 40, 1381–1388.

    Article  CAS  Google Scholar 

  27. Wang, Y., Wu, H., & Zong, M. H. (2008). Improvement of biodiesel production by lipozyme TL IM-catalyzed methanolysis using response surface methodology and acyl migration enhancer. Bioresource Technology, 99, 7232–7237.

    Article  CAS  Google Scholar 

  28. Kaieda, M., Samukawa, T., Kondo, A., & Fukuda, H. (2001). Effect of methanol and water contents on production of biodiesel fuel from plant oil catalyzed by various lipases in a solvent-free system. Journal of Bioscience and Bioengineering, 91, 12–15.

    CAS  Google Scholar 

Download references

Acknowledgment

The work is supported by the National Key Technology R&D Program in the 12th Five year Plan of China (contract No. 2011BAD02B03).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xingguo Wang or Jianhua Huang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Song, Z., Liu, Y., Jin, Q. et al. Lipase-Catalyzed Preparation of Diacylglycerol-Enriched Oil from High-Acid Rice Bran Oil in Solvent-Free System. Appl Biochem Biotechnol 168, 364–374 (2012). https://doi.org/10.1007/s12010-012-9780-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-012-9780-y

Keywords

Navigation