Skip to main content

Advertisement

Log in

Mass Cultivation of Microalgae on Animal Wastewater: a Sequential Two-Stage Cultivation Process for Energy Crop and Omega-3-Rich Animal Feed Production

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

In this study, 97 microalgal strains purchased from algae bank and 50 microalgal strains isolated from local waters in Minnesota were screened for their adaptability growing on a 20-fold diluted digested swine manure wastewater (DSMW). A pool of candidate strains well adapted to the DSMW was established through a high-throughput screening process. Two top-performing facultative heterotrophic strains with high growth rate (0.536 day−1 for UMN 271 and 0.433 day−1 for UMN 231) and one strain with high omega-3 unsaturated fatty acid (EPA, 3.75 % of total fatty acids for UMN 231) were selected. Subsequently, a sequential two-stage mixo-photoautotrophic culture strategy was developed for biofuel and animal feed production as well as simultaneous swine wastewater treatment using above two strains. The maximal biomass concentration and lipid content at the first and second stages reached 2.03 g/L and 23.0 %, and 0.83 g/L and 19.0 % for UMN 271 and UMN 231, respectively. The maximal nutrient removals for total phosphorus and ammonia after second-stage cultivation were 100 and 89.46 %, respectively. The experiments showed that this sequential two-stage cultivation process has great potential for economically viable and environmentally friendly production of both renewable biofuel and high-value animal feed and at the same time for animal wastewater treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Chisti, Y. (2008). Biodiesel from microalgae beats bioethanol. Trends in Biotechnology, 26(3), 126–131.

    Article  CAS  Google Scholar 

  2. De Godos, I., Blanco, S., García-Encina, P. A., Becares, E., & Muňoz, R. (2009). Long-term operation of high rate algal ponds for the bioremediation of piggery wastewaters at high loading rates. Bioresource Technology, 100(19), 4332–4339.

    Article  Google Scholar 

  3. Wilkie, A.C. (2000). Anaerobic digestion: holistic bioprocessing of animal manures. In: Processings of the 1999 Animal Residuals Management Conference. Water Environment Federation, Alexandria, VA, pp. 1–12.

  4. Banerjee, A., Sharma, R., Chisti, Y., & Banerjee, U. C. (2002). Botryococcus braunii: A renewable source of hydrocarbons and other chemicals. Critical Reviews in Biotechnology, 22(245), 279.

    Google Scholar 

  5. Wilkie, A. C., & Mulbry, W. W. (2002). Recovery of dairy manure nutrients by benthic freshwater algae. Bioresource Technology, 84(81), 91.

    Google Scholar 

  6. Vazhappilly, R., & Chen, F. (1998). Eicosapentaenoic acid and docosahexaenoic acid production potential of microalgae and their heterotrophic growth. Journal of the American Oil Chemists’ Society, 75(3), 393–397.

    Article  CAS  Google Scholar 

  7. de la NoÜe, J., & Bassères, A. (1989). Biotreatment of anaerobically digested swine manure with microalgae. Biological Wastes, 29, 17–31.

    Article  Google Scholar 

  8. Wang, L., Li, Y., Chen, P., Min, M., Chen, Y., Zhu, J., et al. (2010). Anaerobic digested dairy manure as a nutrient supplement for cultivation of oil-rich green microalgae Chlorella sp. Bioresource Technology, 101, 2623–2628.

    Article  CAS  Google Scholar 

  9. Woertz, I., Feffer, A., Lundquist, T., & Nelson, Y. (2009). Algae grown on dairy and municipal wastewater for simultaneous nutrient removal and lipid production for biofuel feedstock. Journal of Environmental Engineering, 135(11), 1115–1122.

    Article  CAS  Google Scholar 

  10. Das, P., Aziz, S. S., & Obbard, J. P. (2011). Two phase microalgae growth in the open system for enhanced lipid productivity. Renewable Energy, 36, 2524–2528.

    Article  CAS  Google Scholar 

  11. Zhou, W. G., Li, Y., Min, M., Hu, B., Chen, P., & Ruan, R. (2011). Local bioprospecting for high-lipid producing microalgal strains to be grown on concentrated municipal wastewater for biofuel production. Bioresource Technology, 102(13), 6909–6919.

    Article  CAS  Google Scholar 

  12. Zhou, W.G., Li, Y., Min, M., Hu, B., Zhang, H., Ma, X., et al. (2012a). Growing wastewater-born microalga Auxenochlorella protothecoides UMN280 on concentrated municipal wastewater for simultaneous nutrient removal and energy feedstock production. Applied Energy. doi: 10.1016/j.apenergy.2012.04.005.

  13. APHA, AWWA, & WEF. (1995). Standard methods for the examination of water and wastewater (19th ed.). Washington, DC: American Public Health Association.

    Google Scholar 

  14. Hach. Procedure manual. (2008). Hach, Loveland, CO.

  15. Folch, J., Lees, M., & Sloane Stanley, G. H. (1956). A simple method for the isolation and purification of total lipides from animal tissues. Journal of Biological Chemistry, 226(1), 497–509.

    Google Scholar 

  16. López, C. V. G., García, M. C. C., & Fernández, F. G. A. (2010). Protein measurements of microalgal and cyanobacterial biomass. Bioresource Technology, 101(19), 7587–7591.

    Article  Google Scholar 

  17. Wikfors, G. H., Twarog, J. W., & Ukeles, R. (1984). Influence of chemical composition of algal food sources on growth of juvenile oysters, Crassostrea virginica. Biology Bulletin, 167, 251–263.

    Article  Google Scholar 

  18. Indarti, E., Majid, M. I. A., Hashim, R., & Chong, A. (2005). Direct FAME synthesis for rapid total lipid analysis from fish oil and cod liver oil. Journal of Food Composition and Analysis, 18(2–3), 161–170.

    Article  CAS  Google Scholar 

  19. Miller, G. L. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry, 31, 426–432.

    Article  CAS  Google Scholar 

  20. Lusk, P. (1998). Methane recovery from animal manures the current opportunities casebook. National Renewable Energy Laboratory, NREL/SR-580-25145, September.

  21. Cheng, J., & Liu, B. (2002). Swine wastewater treatment in anaerobic digesters with floating medium. Transactions of ASAE, 45, 799–805.

    CAS  Google Scholar 

  22. McKinley, K. R., & Wetzel, R. G. (1979). Photolithotrophy, photoheterotrophy, and chemoheterotrophy: Patterns of resource utilization on an annual and a diurnal basis within a pelagic microbial community. Microbial Ecology, 5, 1–15.

    Article  CAS  Google Scholar 

  23. Chinnasamy, S., Bhatnagar, A., Hunt, R. W., & Das, K. C. (2010). Microalgae cultivation in a wastewater dominated by carpet mill effluents for biofuel applications. Bioresource Technology, 101, 3097–3105.

    Article  CAS  Google Scholar 

  24. Sheehan, J., Dunahay, T., Benemann, J., Roessler, P. (1998). A look back at the U.S. Department of Energy’s Aquatic Species Program: Biodiesel from algae. Close-Out Report, National Renewable Energy Laboratory, NREL/TP-580-24190.

  25. Pérez, M. V. J., Castillo, P. S., Romera, O., Moreno, D. F., & Martínez, C. P. (2004). Growth and nutrient removal in free and immobilized planktonic green algae isolated from pig manure. Enzyme and Microbial Technology, 34, 392–398.

    Article  Google Scholar 

  26. Liang, Y., Sarkany, N., & Cui, Y. (2009). Biomass and lipid productivities of Chlorella vulgaris under autotrophic, heterotrophic and mixotrophic growth conditions. Biotechnology Letters, 31(7), 1043–1049.

    Article  CAS  Google Scholar 

  27. Chiu, S. Y., Kao, C. Y., Chen, C. H., Kuan, T. C., Ong, S. C., & Lin, C. S. (2008). Reduction of CO2 by a high-density culture of Chlorella sp. in a semicontinuous photobioreactor. Bioresource Technology, 99, 3389–3396.

    Article  CAS  Google Scholar 

  28. Chang, E. H., & Yang, S. S. (2003). Some characteristics of microalgae isolated in Taiwan for biofixation of carbon dioxide. Botanical Bulletin Academy Sinica, 44, 43–52.

    CAS  Google Scholar 

  29. Richmond, A. (2004). Handbook of microalgal culture. Oxford: Blackwell Science Ltd.

    Google Scholar 

  30. Li, Y., Chen, Y. F., Chen, P., Min, M., Zhou, W. G., Martinez, B., et al. (2011). Characterization of a microalgae Chlorella sp. well adapted to highly concentrated municipal wastewater in nutrient removal and biodiesel production. Bioresource Technology, 102, 5138–5144.

    Article  CAS  Google Scholar 

  31. Xiong, W., Li, X. F., Xiang, J. Y., & Wu, Q. Y. (2008). High-density fermentation of microalga Chlorella protothecoides in bioreactor for micro bio-diesel production. Applied Microbiology and Biotechnology, 78, 29–36.

    Article  CAS  Google Scholar 

  32. Zhou, W. G., Cheng, Y., Li, Y., Wan, Y., Liu, Y., Lin, X., et al. (2012). Novel fungal pelletization assisted technology for algae harvesting and wastewater treatment. Applied Biochemistry and Biotechnology. doi:10.1007/s12010-012-9667-y.

  33. Nettleton, J. A. (1995). Omega-3 fatty acids and health. New York: Chapman Hall.

    Book  Google Scholar 

  34. Becker, E. W. (2007). Micro-algae as a source of protein. Biotechnology Advances, 25(2), 207–210.

    Article  CAS  Google Scholar 

  35. Clarens, A. F., Resurreccion, E. P., White, M. A., & Colosi, L. M. (2010). Environmental life cycle comparison of algae to other bioenergy feedstocks. Environmental Science and Technology, 44(5), 1813–1819.

    Article  CAS  Google Scholar 

  36. Pittman, J. K., Dean, A. P., & Osundeko, O. (2010). The potential of sustainable algal biofuel production using wastewater resources. Bioresource Technology. doi:10.1016/j.biotech.2010.06.035.

Download references

Acknowledgments

The study was partially supported by grants from the University of Minnesota Initiative for Renewable Energy and the Environment, Metropolitan Council Environmental Services, Xcel Energy, and the Legislative-Citizen Commission on Minnesota Resources. The authors are also grateful to Blanca C. Martinez for providing help in the labs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roger Ruan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, W., Hu, B., Li, Y. et al. Mass Cultivation of Microalgae on Animal Wastewater: a Sequential Two-Stage Cultivation Process for Energy Crop and Omega-3-Rich Animal Feed Production. Appl Biochem Biotechnol 168, 348–363 (2012). https://doi.org/10.1007/s12010-012-9779-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-012-9779-4

Keywords

Navigation