Skip to main content
Log in

An Improved Process of Ethanol Production from Hemicellulose: Bioconversion of Undetoxified Hemicellulosic Hydrolyzate from Steam-Exploded Corn Stover with a Domesticated Pichia stipitis

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Bioconversion of undetoxified hemicellulosic hydrolyzate from steam-exploded corn stover was investigated with a domesticated Pichia stipitis CBS 5776. The countercurrent washing was applied to recover sugars from the steam-exploded corn stover, which could enrich sugars in washing liquor and give an efficient saving of water. Acid concentration, reaction temperature, and time were optimized for the acid post-hydrolysis of oligosaccharides in steam-exploded prehydrolyzate by a central composite design and response surface methodology. The domestication of P. stipitis to the hydrolyzate resulted in improving sugar consumption and ethanol yield by gradually increasing the ratio of hydrolyzate in the medium. Recycling utilization of the domesticated yeast demonstrated that the yeast kept a stable ability of fermenting both hexose and pentose in the undetoxified hydrolyzate. The sugar consumption and ethanol yield were over 90 and 80 %, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Jeffries, T. W., & Jin, Y. (2004). Applied Microbiology and Biotechnology, 63, 495–509.

    Article  CAS  Google Scholar 

  2. Margeot, A., Hahn-Hagerdal, B., Edlund, M., Slade, R., & Monot, F. (2009). Current Opinion in Biotechnology, 20, 372–380.

    Article  CAS  Google Scholar 

  3. Wyman, C. E. (2007). Trends in Biotechnology, 25, 153–157.

    Article  CAS  Google Scholar 

  4. Hsu, T. (1996). In C. E. Wyman (Ed.), Pretreatment of biomass: handbook on bioethanol: production and utilization (pp. 179–195). New York: CRC Press.

    Google Scholar 

  5. Delgenes, J. P., Laplace, J. M., Moletta, R., & Navarro, J. M. (1996). Biomass and Bioenergy, 11, 353–360.

    Article  CAS  Google Scholar 

  6. Sun, Y., & Cheng, J. (2002). Bioresource Technology, 83, 1–11.

    Article  CAS  Google Scholar 

  7. Zhu, J., Yong, Q., Xu, Y., & Yu, S. (2011). Bioresource Technology, 102, 1663–1668.

    Article  CAS  Google Scholar 

  8. Gírio, F. M., Fonseca, C., Carvalheiro, F., Duarte, L. C., Marques, S., & Bogel-Łukasik, R. (2007). Bioresource Technology, 101, 4775–4800.

    Article  Google Scholar 

  9. Alvira, P., Tomás-Pejó, E., Ballesteros, M., & Negro, M. J. (2010). Bioresource Technology, 101, 4851–4861.

    Article  CAS  Google Scholar 

  10. Li, H., & Chen, H. (2008). Process Biochemistry, 43, 1447–1451.

    Article  CAS  Google Scholar 

  11. Rahman, S. H. A., Choudhury, J. P., Ahmad, A. L., & Kamaruddin, A. H. (2007). Bioresource Technology, 98, 554–559.

    Article  CAS  Google Scholar 

  12. Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D. (2006). Technical report, NREL/TP-510-42623.

  13. Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D., et al. (2006). Determination of structural carbohydrates and lignin in biomass. Golden: NREL.

    Google Scholar 

  14. Jiang, Z., Zhu, J., Li, X., Lian, Z., Yu, S., & Yong, Q. (2011). Chinese Journal of Chromatography, 29, 59–62.

    Google Scholar 

  15. Banwart, W. L., Porter, P. M., Granato, T. C., & Hassett, J. J. (1985). Journal of Chemical Ecology, 11, 383–395.

    Article  CAS  Google Scholar 

  16. Svarovsky, L. (2001). Countercurrent washing of solids. Solid–liquid separation (4th ed.). Oxford: Jordan Hill.

    Google Scholar 

  17. Pimentel, D., & Patzek, T. W. (2005). Natural Resources Research, 14, 65–76.

    Article  CAS  Google Scholar 

  18. Roberto, I. C., Mussatto, S. I., & Rodrigues, R. C. L. B. (2003). Industrial Crops and Products, 17, 171–176.

    Article  CAS  Google Scholar 

  19. Canettieri, E. V., de Moraes Rocha, G. J., de Carvalho, J. A., Jr., & de Almeida e Silva, J. B. (2007). Bioresource Technology, 98, 422–428.

    Article  CAS  Google Scholar 

  20. Yan, L., Zhang, H., Chen, J., Lin, Z., Jin, Q., Jia, H., et al. (2009). Bioresource Technology, 100, 1803–1808.

    Article  CAS  Google Scholar 

  21. Tomás-Pejó, E., Oliva, J. M., Ballesteros, M., & Olsson, L. (2008). Biotechnology and Bioengineering, 100, 1122–1131.

    Article  Google Scholar 

  22. Agbogbo, F. K., Haagensen, F. D., Milam, D., & Wenger, K. S. (2008). Applied Biochemistry and Biotechnology, 145, 53–58.

    Article  CAS  Google Scholar 

  23. Nigam, J. N. (2001). Journal of Applied Microbiology, 90, 208–215.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support from the National Natural Science Foundation of China (grant nos. 31000278 and 31070523), Research Fund for the Doctoral Program of Higher Education of China (grant no. 20103204120009), Governmental Public Industry Research Special Funds for Projects (grant no. 201004001), and The Priority Academic Program Development of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Yong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yong, Q., Li, X., Yuan, Y. et al. An Improved Process of Ethanol Production from Hemicellulose: Bioconversion of Undetoxified Hemicellulosic Hydrolyzate from Steam-Exploded Corn Stover with a Domesticated Pichia stipitis . Appl Biochem Biotechnol 167, 2330–2340 (2012). https://doi.org/10.1007/s12010-012-9778-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-012-9778-5

Keywords

Navigation