Skip to main content
Log in

Characterization of Bioimprinted Tannase and Its Kinetic and Thermodynamics Properties in Synthesis of Propyl Gallate by Transesterification in Anhydrous Medium

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Tannase has been extensively applied to synthesize gallic acid esters. Bioimprinting technique can evidently enhance transesterification-catalyzing performance of tannase. In order to promote the practical utilization of the modified tannase, a few enzymatic characteristics of the enzyme and its kinetic and thermodynamics properties in synthesis of propyl gallate by transesterification in anhydrous medium have been studied. The investigations of pH and temperature found that the imprinted tannase holds an optimum activity at pH 5.0 and 40 °C. On the other hand, the bioimprinting technique has a profound enhancing effect on the adapted tannase in substrate affinity and thermostability. The kinetic and thermodynamic analyses showed that the modified tannase has a longer half-time of 1,710 h at 40 °C; the kinetic constants, the activation energy of reversible thermal inactivation, and the activation energy of irreversible thermal inactivation, respectively, are 0.054 mM, 17.35 kJ mol−1, and 85.54 kJ mol−1 with tannic acid as a substrate at 40 °C; the free energy of Gibbs (ΔG) and enthalpy (ΔH) were found to be 97.1 and 82.9 kJ mol-1 separately under the same conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Chávez-González, M., Rodríguez-Durán, L. V., Balagurusamy, N., Prado-Barragán, A., Rodríguez, R., Contreras, J. C., & Aguilar, C. N. (2011). Biotechnological advances and challenges of tannase: An overview. Food Bioprocess Technology, 5, 445–459.

    Article  Google Scholar 

  2. Aguilar, C. N., Rodriguez, R., Gutierrez-Sanchez, G., Augur, C., Favela-Torres, E., Prado-Barragan, L. A., Ramirez-Coronel, A., & Contreras-Esquivel, J. C. (2007). Microbial tannases: Advances and perspectives. Applied Microbiology and Biotechnology, 76, 47–59.

    Article  CAS  Google Scholar 

  3. Jung, H. J., & Lim, C. J. (2011). The antiangiogenic and antinociceptive activities of n-propyl gallate. Phytotherapy Research, 25, 1570–1573.

    Article  CAS  Google Scholar 

  4. Han, Y. H., Moon, H. J., You, B. R., Kim, S. Z., Kim, S. H., & Park, W. H. (2010). Propyl gallate inhibits the growth of HeLa cells via caspase-dependent apoptosis as well as a G1 phase arrest of the cell cycle. Oncology Reports, 23, 1153–1158.

    Article  CAS  Google Scholar 

  5. Bracht, A., Eler, G. J., & Peralta, R. M. (2009). The action of n-propyl gallate on gluconeogenesis and oxygen uptake in the rat liver. Chemico-Biological Interactions, 181, 390–399.

    Article  Google Scholar 

  6. Dolatabadi, J. E. N., & Kashanian, S. (2010). A review on DNA interaction with synthetic phenolic food additives. Food Research International, 43, 1223–1230.

    Article  CAS  Google Scholar 

  7. Cheng, K. W., Yang, R. Y., Tsou, S. C. S., Lo, C. S. C., Ho, C. T., Lee, T. C., & Wang, M. F. (2009). Analysis of antioxidant activity and antioxidant constituents of Chinese toon. Journal of Functional Foods, 1, 253–259.

    Article  CAS  Google Scholar 

  8. Fernandez-Lorente, G., Bolivar, J. M., Rocha-Martin, J., Curiel, J. A., Munoz, R., Rivas, B. D., Carrascosa, A. V., & Guisan, J. M. (2011). Synthesis of propyl gallate by transesterification of tannic acid in aqueous media catalysed by immobilised derivatives of tannase from Lactobacillus plantarum. Food Chemistry, 128, 214–217.

    Article  CAS  Google Scholar 

  9. Raab, T., Bel-Rhlid, R., Williamson, G., Hansen, C. E., & Chaillot, D. (2007). Enzymatic galloylation of catechins in room temperature ionic liquids. Journal of Molecular Catalysis B: Enzymatic, 44, 60–65.

    Article  CAS  Google Scholar 

  10. Gaathon, A., Gross, Z., & Rozhanski, M. (1989). Propyl gallate: enzymatic synthesis in a reverse micelle system. Enzyme and Microbial Technology, 11, 604–609.

    Article  CAS  Google Scholar 

  11. Wang, G., Chen, Q., & Gu, W. (2010). Technical study on preparation of propyl gallate with tannin. Journal of Central South University of Forestry & Technology, 30, 137–140.

    CAS  Google Scholar 

  12. Yu, X. W., Li, Y. Q., Zhou, S. M., & Zheng, Y. Y. (2007). Synthesis of propyl gallate by mycelium-bound tannase from Aspergillus niger in organic solvent. World Journal of Microbiology and Biotechnology, 23, 1091–1098.

    Article  CAS  Google Scholar 

  13. Weetall, H. H. (1985). Enzymatic synthesis of gallic acid esters. Applied Microbiology and Biotechnology, 11, 25–28.

    CAS  Google Scholar 

  14. Yu, X. W., Li, Y. Q., & Wu, D. (2004). Microencapsulation of tannase by chitosan−alginate complex coacervate membrane: Synthesis of antioxidant propyl gallate in biphasic media. Journal of Chemical Technology and Biotechnology, 79, 475–479.

    Article  CAS  Google Scholar 

  15. Wang, Z. (2009). Synthesis of alky gallate by tannase immobilized in microemulsion-based-gels. Chemistry and Industry of Forest Products, 29, 1–5.

    Google Scholar 

  16. Sharma, S., & Gupta, M. N. (2003). Synthesis of antioxidant propyl gallate using tannase from Aspergillus niger van Teighem in nonaqueous media. Bioorganic & Medicinal Chemistry Letters, 13, 395–397.

    Article  CAS  Google Scholar 

  17. Russel, A., & Klibanov, A. (1988). Inhibitor-induced enzyme activation in organic solvents. Journal of Biological Chemistry, 263, 11624–11626.

    Google Scholar 

  18. Fishman, A., & Cogan, U. (2003). Bio-imprinting of lipases with fatty acids. Journal of Molecular Catalysis B: Enzymatic, 22, 193–202.

    Article  CAS  Google Scholar 

  19. Stahl, M., Jeppssonwistrand, U., Mansson, M. O., & Mosbach, K. (1991). Induced stereoselectivity and substrate selectivity of bio-imprinted Alpha-chymotrypsin in anhydrous organic media. Journal of the American Chemical Society, 113, 9366–9368.

    Article  Google Scholar 

  20. Fernandez-Lorente, G., Palomo, J. M., Cabrera, Z., Fernandez-Lafuente, R., & Guisan, J. M. (2007). Improved catalytic properties of immobilized lipases by the presence of very low concentrations of detergents in the reaction medium. Biotechnology and Bioengineering, 97, 242–250.

    Article  CAS  Google Scholar 

  21. Kamiya, N., Kasagi, H., Inoue, M., Kusunoki, K., & Goto, M. (1999). Enantioselective recognition mechanism of secondary alcohol by surfactant-coated lipases in nonaqueous media. Biotechnology and Bioengineering, 65, 227–232.

    Article  CAS  Google Scholar 

  22. Thakar, A., & Madamwar, D. (2005). Enhanced ethyl butyrate production by surfactant coated lipase immobilized on silica. Process Biochemistry, 40, 3263–3266.

    Article  CAS  Google Scholar 

  23. González-Navarro, H., & Braco, L. (1997). Improving lipase activity in solvent-free media by interfacial activation-based molecular bioimprinting. Journal of Molecular Catalysis B: Enzymatic, 3, 111–119.

    Article  Google Scholar 

  24. Liu, T., Liu, Y., Wang, X. F., Li, Q., Wang, J. K., & Yan, Y. J. (2011). Improving catalytic performance of Burkholderia cepacia lipase immobilized on macroporous resin NKA. Journal of Molecular Catalysis B: Enzymatic, 71, 45–50.

    Article  CAS  Google Scholar 

  25. Yang, J., Liu, L., & Cao, X. (2010). Combination of bioimprinting and silane precursor alkyls improved the activity of sol–gel-encapsulated lipase. Enzyme and Microbial Technology, 46, 257–261.

    Article  CAS  Google Scholar 

  26. Teke, A. B., Sezginturk, M. K., Teke, M., Dinckaya, E., & Telefoncu, A. (2007). A bio-imprinted ascorbate oxidase biosensor. International Journal of Environmental and Analytical Chemistry, 87, 723–729.

    Article  CAS  Google Scholar 

  27. Teke, M., Sezginturk, M. K., Dinckaya, E., & Telefoncu, A. (2008). A bio-imprinted urease biosensor: Improved thermal and operational stabilities. Talanta, 74, 661–665.

    Article  CAS  Google Scholar 

  28. Kronenburg, N. A. E., de Bont, J. A. M., & Fischer, L. (2001). Improvement of enantioselectivity by immobilized imprinting of epoxide hydrolase from Rhodotorula glutinis. Journal of Molecular Catalysis B: Enzymatic, 16, 121–129.

    Article  CAS  Google Scholar 

  29. Nie, G., Zheng, Z., Jin, W., Gong, G., & Wang, L. (2012). Development of a tannase biocatalyst based on bio-imprinting for the production of propyl gallate by transesterification in organic media. Journal of Molecular Catalysis B: Enzymatic, 78, 32–37.

    Article  CAS  Google Scholar 

  30. Bhatti, H. N., & Saleem, N. (2009). Characterization of glucose oxidase from Penicillium notatum. Food Technology and Biotechnology, 47, 331–335.

    CAS  Google Scholar 

  31. Amin, M., Bhatti, H. A. Q. N., & Pervin, F. (2011). Production, partial purification and thermal characterization of β-amylase from Fusarium solani in solid state fermentation. Journal of the Chemical Society of Pakistan, 30, 480–485.

    Google Scholar 

  32. Shaheen, I., Bhatti, H. N., & Ashraf, T. (2008). Production, purification and thermal characterisation of invertase from a newly isolated Fusarium sp. under solid-state fermentation. International Journal of Food Science and Technology, 43, 1152–1158.

    Article  CAS  Google Scholar 

  33. Ramos, E. L., Mata-Gomez, M. A., Rodriguez-Duran, L. V., Belmares, R. E., Rodriguez-Herrera, R., & Aguilar, C. N. (2011). Catalytic and thermodynamic properties of a tannase produced by Aspergillus niger GH1 grown on polyurethane foam. Applied Microbiology and Biotechnology, 165, 1141–1151.

    CAS  Google Scholar 

  34. Yu, X. W., & Li, Y. Q. (2006). Kinetics and thermodynamics of synthesis of propyl gallate by mycelium-bound tannase from Aspergillus niger in organic solvent. Journal of Molecular Catalysis B: Enzymatic, 40, 44–50.

    Article  CAS  Google Scholar 

  35. Eyring, H., & Stearn, A. E. (1939). The application of the theory of absolute reaction rates to proteins. Chemical Reviews, 24, 253–270.

    Article  CAS  Google Scholar 

  36. Cleland, W. W. (1963). The kinetics of enzyme-catalyzed reactions with two or more substrates or products. I. Nomenclature and rate equations. Biochimica et Biophysica Acta, 67, 104–137.

    Article  CAS  Google Scholar 

  37. King, E. L., & Altman, C. (1956). A schematic method of deriving the rate laws for enzyme-catalyzed reactions. Journal of Physical Chemistry, 60, 1375–1378.

    Article  CAS  Google Scholar 

  38. Kasieczka-Burnecka, M., Kuc, K., Kalinowska, H., Knap, M., & Turkiewicz, M. (2007). Purification and characterization of two cold-adapted extracellular tannin acyl hydrolases from an Antarctic strain Verticillium sp. P9. Applied Microbiology and Biotechnology, 77, 77–89.

    Article  CAS  Google Scholar 

  39. Battestin, V., & Macedo, G. A. (2007). Effects of temperature, pH and additives on the activity of tannase produced by Paecilomyces variotii. Electronic Journal of Biotechnology, 10, 191–199.

    Article  CAS  Google Scholar 

  40. Mahapatra, K., Nanda, R. K., Bag, S. S., Banerjee, R., Pandey, A., & Szakacs, G. (2005). Purification, characterization and some studies on secondary structure of tannase from Aspergillus awamori nakazawa. Process Biochemistry, 40, 3251–3254.

    Article  CAS  Google Scholar 

  41. Sabu, A., Kiran, G. S., & Pandey, A. (2005). Purification and characterization of tannin acyl hydrolase from Aspergillus niger ATCC 16620. Food Technology and Biotechnology, 43, 133–138.

    CAS  Google Scholar 

  42. Singh, R. S., Saini, G. K., & Kennedy, J. F. (2010). Covalent immobilization and thermodynamic characterization of pullulanase for the hydrolysis of pullulan in batch system. Carbohydrate Polymers, 81, 252–259.

    Article  CAS  Google Scholar 

  43. Javed, M. R., Rashid, M. H., Nadeem, H., Riaz, M., & Perveen, R. (2009). Catalytic and thermodynamic characterization of endoglucanase (CMCase) from Aspergillus oryzae cmc-1. Applied Microbiology and Biotechnology, 157, 483–497.

    CAS  Google Scholar 

  44. Bhatti, H. N., Rashid, M. H., Nawaz, R., Khalid, A. M., Asgher, M., & Jabbar, A. (2007). Effect of aniline coupling on kinetic and thermodynamic properties of Fusarium solani glucoamylase. Applied Microbiology and Biotechnology, 73, 1290–1298.

    Article  CAS  Google Scholar 

  45. Sharma, S., Bhat, T. K., & Dawra, R. K. (1999). Isolation, purification and properties of tannase from Aspergillus niger van Tieghem. World Journal of Microbiology and Biotechnology, 15, 673–677.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work has been supported by grants Knowledge Innovation Program of the Chinese Academy of Sciences (KSCX2-YW-G-050) and the National High Technology Research and Development Program of China (SQ2008AA02Z4477854).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiming Zheng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nie, G., Zheng, Z., Gong, G. et al. Characterization of Bioimprinted Tannase and Its Kinetic and Thermodynamics Properties in Synthesis of Propyl Gallate by Transesterification in Anhydrous Medium. Appl Biochem Biotechnol 167, 2305–2317 (2012). https://doi.org/10.1007/s12010-012-9775-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-012-9775-8

Keywords

Navigation