Skip to main content
Log in

Apple Hypanthium Firmness: New Insights from Comparative Proteomics

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Fruit firmness constitutes an important textural property and is one of the key parameters for estimating ripening and shelf life, which has a major impact on commercialization. In order to decipher the mechanisms related to firmness of apples (Malus × domestica Borkh.), two-dimensional gel electrophoresis (2-DE) was used to compare the total proteome of high and low firmness phenotypes from apple hypanthia of a ‘Golden Delicious’ × ‘Dietrich’ population. A total of 36 differentially regulated protein spots were positively identified by matrix assisted laser desorption/ionization-time of flight (MALDI-TOF) mass spectrometry (MS) and then validated against the Malus expressed sequence tags (EST) database. The findings of this study indicated a lower expression of ethylene biosynthesis related proteins in the high firmness phenotype, which could be linked to the slowing down of the ripening and softening processes. The reduced accumulation of proteins involved in ethylene biosynthesis juxtaposed to the upregulation of a transposase and a GTP-binding protein in the high firmness phenotype. The results also showed higher expression of cytoskeleton proteins in the high firmness phenotype compared to the low firmness phenotype, which play a role in maintaining cell structure and possibly fruit integrity. Finally, a number of proteins involved in detoxification and defense were expressed in fruit hypanthium. This proteomic study provides a contribution towards a better understanding of regulatory networks involved in fruit hypanthium firmness and/or softening, which could be instrumental in the development of improved fruit quality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Rhodes, M. J. C. (1980). Senescence in plants, Boca Raton, FL.

  2. Hampson, C. R., Quamme, H. A., Hall, J. W., MacDonald, R. A., King, M. C., & Cliff, M. A. (2000). Euphytica, 111, 79–90.

    Article  Google Scholar 

  3. El Masrya, G., Wanga, N., El Sayedb, A., & Ngadia, M. (2007). Journal of Food Engineering, 81, 98–107.

    Article  CAS  Google Scholar 

  4. Lu, R. (2004). Postharvest Biology and Technology, 31, 147–157.

    Article  Google Scholar 

  5. Peng, Y., & Lu, R. (2007). Journal of Food Engineering, 82, 142–152.

    Article  Google Scholar 

  6. Brummell, D. A., & Harpster, M. H. (2001). Plant Molecular Biology, 47, 311–340.

    Article  CAS  Google Scholar 

  7. Callahan, A. M., Scorza, R., Bassett, C., Nickerson, M., & Abeles, F. B. (2004). Functional Plant Biology, 31, 159–168.

    Article  CAS  Google Scholar 

  8. Harker, F. R., & Hallett, I. C. (1992). Horticultural Science, 27, 1291–1294.

    Google Scholar 

  9. Lapsley, K. G., Escher, F. E., & Hoehn, E. (1992). Food Structure, 11, 339–349.

    Google Scholar 

  10. Kahn, A. A., & Vincent, J. F. V. (1990). Journal of the Science of Food and Agriculture, 52, 455–466.

    Article  Google Scholar 

  11. Tong, C., Krueger, D., Vickers, Z., Bedford, D., Luby, J., El-Shiekh, A., et al. (1999). Journal of the American Society for Horticultural Science, 124, 407–415.

    Google Scholar 

  12. Knee, M. (1973). Phytochemistry, 12, 1543–1549.

    Article  CAS  Google Scholar 

  13. Jarvis, M. C. (1984). Plant Cell & Environment, 7, 153–164.

    CAS  Google Scholar 

  14. Rose, J. K. C., & Bennett, A. B. (1999). Trends in Plant Science, 4, 176–183.

    Article  Google Scholar 

  15. Flores, F., Ben Amor, M., Jones, B., Pech, J. C., Bouzayen, M., Latche, A., et al. (2001). Physiologia Plantarum, 113, 128–133.

    Article  CAS  Google Scholar 

  16. Gray, J. E., Picton, S., Giovannoni, J. J., & Grierson, D. (1994). Plant Cell & Environment, 17, 557–571.

    Article  CAS  Google Scholar 

  17. Deikman, J. (1997). Physiologia Plantarum, 100, 561–566.

    Article  CAS  Google Scholar 

  18. Giovannoni, J. (2001). Annual Review of Plant Physiology and Plant Molecular Biology, 52, 725–749.

    Article  CAS  Google Scholar 

  19. Ross, G. S., Knighton, M. L., & Lay-Yee, M. (1992). Plant Molecular Biology, 19, 231–238.

    Article  CAS  Google Scholar 

  20. Picton, S., Barton, S. L., Bouzayen, M., Hamilton, A. J., & Grierson, D. (1993). The Plant Journal, 3, 469–481.

    Article  CAS  Google Scholar 

  21. Theologis, A., Oeller, P. W., Wong, L. M., Rottmann, W. H., & Gantz, D. M. (1993). Developmental Genetics, 14, 282–295.

    Article  CAS  Google Scholar 

  22. Ayub, R., Guis, M., BenAmor, M., Gillot, L., Roustan, J. P., Latche, A., et al. (1996). Nature Biotechnology, 14, 862–866.

    Article  CAS  Google Scholar 

  23. DeEll, J. R., Khanizadeh, S., Saad, F., & Ferree, D. C. (2001). Journal American Pomological Society, 55, 8–27.

    Google Scholar 

  24. DeEll, J. R., Murr, D. P., Porteous, M. D., & Rupasinghe, H. P. V. (2002). Postharvest Biology and Technology, 24, 349–353.

    Article  CAS  Google Scholar 

  25. Costa, F., Stella, S., Sansavini, S., & Van de Weg, W. E. (2005). Acta Horticulturae, 682, 389–394.

    CAS  Google Scholar 

  26. Stella, S., Costa, F., & Sansavini, S. (2007). Advances in plant ethylene research. Netherlands: Springer.

    Google Scholar 

  27. Asif, M. H., Pathak, N., Solomos, T., & Trivedi, P. K. (2009). South African Journal of Botany, 75, 137–144.

    Article  CAS  Google Scholar 

  28. Ciardi, J., & Klee, H. (2001). Annals of Botany, 88, 813–822.

    Article  CAS  Google Scholar 

  29. Slater, A., Maunders, M. J., Edwards, K., Schuch, W., & Grierson, D. (1985). Plant Molecular Biology, 5, 137–147.

    Article  CAS  Google Scholar 

  30. Aggelis, A., John, I., Karvouni, Z., & Grierson, D. (1997). Plant Molecular Biology, 33, 313–322.

    Article  CAS  Google Scholar 

  31. Zegzouti, H., Jones, B., Frasse, P., Marty, C., Maitre, B., Latche, A., et al. (1999). The Plant Journal, 18, 589–600.

    Article  CAS  Google Scholar 

  32. King, G. J., Maliepaard, C., Lynn, J. R., Alston, F. H., Durel, C. E., Evans, K. M., et al. (2000). Theoretical and Applied Genetics, 100, 1074–1084.

    Article  Google Scholar 

  33. Maliepaard, C., Sillanpaa, M. J., van Ooijen, J. W., Jansen, R. C., & Arjas, E. (2001). Theoretical and Applied Genetics, 103, 1243–1253.

    Article  CAS  Google Scholar 

  34. Seymour, G. B., Manning, K., Eriksson, E. M., Popovich, A. H., & King, G. J. (2002). Journal of Experimental Botany, 53, 2065–2071.

    Article  CAS  Google Scholar 

  35. Liebhard, R., Kellerhals, M., Pfammatter, W., Jertmini, M., & Gessler, C. (2003). Plant Molecular Biology, 52, 511–526.

    Article  CAS  Google Scholar 

  36. Kenis, K., Keulemans, J., & Davey, M. W. (2008). Tree Genetics and Genomes, 4, 647–661.

    Article  Google Scholar 

  37. Costa, F., Peace, C. P., Stella, S., Serra, S., Musacchi, S., Bazzani, M., et al. (2010). Journal of Experimental Botany, 61, 3029–3039.

    Article  CAS  Google Scholar 

  38. Marondedze, C. (2011). Fruit quality traits in apples. Germany: LAP.

    Google Scholar 

  39. Van Wijk, K. J. (2001). Plant Physiology, 126, 501–508.

    Article  Google Scholar 

  40. Sarry, J. E., Sommerer, N., Sauvage, F. X., Bergoin, A., Rossignol, M., Albagnac, G., et al. (2004). Proteomics, 4, 201–215.

    Article  CAS  Google Scholar 

  41. Rocco, M., D’Ambrosio, C., Arena, C., Faurobert, M., Scaloni, A., & Marra, M. (2006). Proteomics, 6, 3781–3791.

    Article  CAS  Google Scholar 

  42. Faurobert, M., Mihr, C., Bertin, N., Pawlowski, T., Negroni, L., Sommerer, N., et al. (2007). Plant Physiology, 143, 1327–1346.

    Article  CAS  Google Scholar 

  43. Guarino, C., Arena, S., De Simone, L., D'Ambrosio, C., Santoro, S., Rocco, M., et al. (2007). Molecular Nutrition & Food Research, 51, 255–262.

    Article  CAS  Google Scholar 

  44. Bianco, L., Lopez, L., Scalone, A. G., Di Carli, M., Desiderio, A., Benvenuto, E., et al. (2009). Journal of Proteomics, 72, 586–607.

    Article  CAS  Google Scholar 

  45. Centeno, D. C., Osorio, S., Nunes-Nesi, A., Bertolo, A. L. F., Carneiro, R. T., Araujo, W. L., et al. (2011). The Plant Cell, 23, 162–184.

    Article  CAS  Google Scholar 

  46. Lilley, K. S., & Dupree, P. (2006). Journal of Experimental Botany, 57, 1493–1499.

    Article  CAS  Google Scholar 

  47. DeLong, J. M., Prange, R. K., Harrison, P. A., & McRae, K. B. (2000). Postharvest Biology and Technology, 19(3), 201–209.

    Article  Google Scholar 

  48. Wang, W., Vignani, R., Scali, M., & Cresti, M. (2006). Electrophoresis, 27, 2782–2786.

    Article  CAS  Google Scholar 

  49. Marondedze, C., & Thomas, L. A. (2012). Journal of Plant Physiology, 169, 12–19.

    Article  CAS  Google Scholar 

  50. Ramagli, L. S., & Rodriguez, L. V. (1985). Electrophoresis, 6, 559–563.

    Article  CAS  Google Scholar 

  51. Laemmli, U. K. (1970). Nature, 227, 680–685.

    Article  CAS  Google Scholar 

  52. Garavaglia, B. S., Thomas, L., Gottig, N., Dunger, G., Garofalo, C. G., Daurelio, L. D., et al. (2010). PloS One, 5, e8950.

    Article  CAS  Google Scholar 

  53. Bevan, M., Bancroft, I., Bent, E., Love, K., Goodman, H., Dean, C., et al. (1998). Nature, 391, 485–488.

    Article  CAS  Google Scholar 

  54. Meier, S., & Gehring, C. (2008). Journal of Biotechnology, 3, 1375–1387.

    Article  CAS  Google Scholar 

  55. Vrebalov, J., Ruezinsky, D., Padmanabhan, V., White, R., Medrano, D., Drake, R., et al. (2002). Science, 296, 343–346.

    Article  CAS  Google Scholar 

  56. Bartley, G. E., & Ishida, B. K. (2003). BMC Plant Biology, 3, 4.

    Article  Google Scholar 

  57. Kevany, B. M., Tieman, D. M., Taylor, M. G., Cin, V. D., & Klee, H. J. (2007). The Plant Journal, 51, 458–467.

    Article  CAS  Google Scholar 

  58. Giovannoni, J. J. (2007). Current Opinion in Plant Biology, 10, 283–289.

    Article  CAS  Google Scholar 

  59. Pirrello, J., Regad, F., Latché, A., Pech, J. C., & Bouzayen, M. (2009). CAB Reviews, 4, 1–14.

    Article  CAS  Google Scholar 

  60. Zhang, Z. K., Huber, D. J., Hurr, B. M., & Rao, J. (2009). Postharvest Biology and Technology, 54, 1–8.

    Article  CAS  Google Scholar 

  61. King, G. J., Lynn, J. R., Dover, C. J., Evans, K. M., & Seymour, G. B. (2001). Theoretical and Applied Genetics, 102, 1227–1235.

    Article  CAS  Google Scholar 

  62. Cevik, V., Ryder, C. D., Popovich, A., Manning, K., King, G. J., & Seymour, G. B. (2010). Tree Genetics and Genomes, 6, 271–279.

    Article  Google Scholar 

  63. Chagne, D., Carlisle, C. M., Blond, C., Volz, R. K., Whitworth, C. J., Oraguzie, N. C., et al. (2007). BMC Genomics, 8, 212.

    Article  CAS  Google Scholar 

  64. Gao, Z. S., van de Weg, W. E., Schaart, J. G., Schouten, H. J., Tran, D. H., Kodde, L. P., et al. (2005). Theoretical and Applied Genetics, 111, 171–183.

    Article  CAS  Google Scholar 

  65. Costa, F., Van de Weg, W. E., Stella, S., Dondini, L., Pratesi, D., Musacchi, S., et al. (2008). Tree Genetics and Genomes, 4, 575–586.

    Article  Google Scholar 

  66. Oraguzie, N. C., Iwanami, H., Soejima, J., Harada, T., & Hall, A. (2004). Theoretical and Applied Genetics, 108, 1526–1533.

    Article  CAS  Google Scholar 

  67. Wang, A., Yamakake, J., Kudo, H., Wakasa, Y., Hatsuyama, Y., Igarashi, M., et al. (2009). Plant Physiology, 151, 391–399.

    Article  CAS  Google Scholar 

  68. Ishikawa, T., Yoshimura, K., Tamoi, M., Takeda, T., & Shigeoka, S. (1997). Biochemical Journal, 328, 795–800.

    CAS  Google Scholar 

  69. Beuning, L., Bowen, J., Persson, H., Barraclough, D., Bulley, S., & Macrae, E. (2004). Plant Molecular Biology, 55, 369–388.

    Article  CAS  Google Scholar 

  70. Holmes-Davis, R., Tanaka, C. K., Vensel, W. H., Hurkman, W. J., & McCormick, S. (2005). Proteomics, 5, 4864–4884.

    Article  CAS  Google Scholar 

  71. Hu, T. Z., Qv, X. X., Hu, Z. L., Chen, G. P., & Chen, Z. G. (2011). African Journal of Biotechnology, 10, 490–498.

    CAS  Google Scholar 

  72. Thomas, L. A., Sehata, M. J., du Preez, M. G., Rees, J. G., & Ndimba, B. K. (2010). African Journal of Biotechnology, 9, 4334–4341.

    CAS  Google Scholar 

  73. Velasco, R., Zharkikh, A., Affourtit, J., Dhingra, A., Cestaro, A., Kalyanaraman, A., et al. (2010). Nature Genetics, 42, 833–839.

    Article  CAS  Google Scholar 

  74. Goulao, L. F., & Oliveira, C. M. (2007). Plant Science, 172, 306–318.

    Article  CAS  Google Scholar 

  75. Harada, T., Sunako, T., Wakasa, Y., Soejima, J., Satoh, T., & Niizeki, M. (2000). Theoretical and Applied Genetics, 101, 742–746.

    Article  CAS  Google Scholar 

  76. Alexander, L., & Grierson, D. (2002). Journal of Experimental Botany, 53, 2039–2055.

    Article  CAS  Google Scholar 

  77. Fraser, P. D., Truesdale, M. R., Bird, C. R., Schuch, W., & Bramley, P. M. (1994). Plant Physiology, 105, 405–413.

    CAS  Google Scholar 

  78. Hrazdina, G., Kiss, E., Galli, Z., RosenField, C., Norelli, J. L., & Aldwinckle, H. S. (2003). Acta Horticulturae, 628, 239–251.

    CAS  Google Scholar 

  79. Ciardi, J. A., Tieman, D. M., Lund, S. T., Jones, J. B., Stall, R. E., & Klee, H. J. (2000). Plant Physiology, 123, 81–92.

    Article  CAS  Google Scholar 

  80. Bundock, P., & Hooykaas, P. (2005). Nature, 436, 282–284.

    Article  CAS  Google Scholar 

  81. Weil, C. F., & Wessler, S. R. (1990). Annual Review of Plant Physiology and Plant Molecular Biology, 41, 527–552.

    Article  CAS  Google Scholar 

  82. Terryn, N., Van Montagu, M., & Inze, D. (1993). Plant Molecular Biology, 22, 143–152.

    Article  CAS  Google Scholar 

  83. Zainal, Z., Tucker, G. A., & Lycett, G. W. (1996). Biochimica et Biophysica Acta, 1314, 187–190.

    Article  CAS  Google Scholar 

  84. Lu, C., Zainal, Z., Tucker, G. A., & Lycett, G. W. (2001). The Plant Cell, 13, 1819–1834.

    CAS  Google Scholar 

  85. Falchi, R., Cipriani, G., Marrazzo, T., Nonis, A., Vizzotto, G., & Ruperti, B. (2010). Journal of Experimental Botany, 61, 2829–2842.

    Article  CAS  Google Scholar 

  86. Emes, R. D., & Ponting, C. P. (2001). Human Molecular Genetics, 10, 2813–2820.

    Article  CAS  Google Scholar 

  87. Hirokawa, N. (1994). Current Opinion in Cell Biology, 6, 74–81.

    Article  CAS  Google Scholar 

  88. Sellers, J. R. (2000). Biochimica et Biophysica Acta, 1496, 3–22.

    Article  CAS  Google Scholar 

  89. Volkman, D., & Baluska, F. (1999). Microscopy Research and Techniques, 47, 135–154.

    Article  Google Scholar 

  90. Cope, M. J., Whisstock, J., & Rayment, I. (2000). Structure, 4, 969–986.

    Article  Google Scholar 

  91. Vallee, R. B., & Sheptner, H. S. (1990). Annual Review of Biochemistry, 59, 909–932.

    Article  CAS  Google Scholar 

  92. Goldstein, L. S. B., & Philip, A. V. (1999). Annual Review of Cell and Developmental Biology, 15, 141–183.

    Article  CAS  Google Scholar 

  93. Langford, G. M. (1995). Current Opinion in Cell Biology, 7, 82–88.

    Article  CAS  Google Scholar 

  94. Wheelwright, N. T., & Logan, B. A. (2004). Proceedings of the National Academy of Sciences of the United States of America, 101, 8051–8055.

    Article  CAS  Google Scholar 

  95. Carrari, F., Baxter, C., Usadel, B., Urbanczyk-Wochniak, E., Zanor, M. I., Nunes-Nesi, A., et al. (2006). Plant Physiology 142, 1380–1396.

    Google Scholar 

  96. Kim, L. S., & Grosch, W. (1979). Journal of Agricultural and Food Chemistry, 27, 243–246.

    Article  CAS  Google Scholar 

  97. Ferrie, B., Beaudoin, N., Burkhart, W., Bowsher, C., & Rothstein, S. (1994). Plant Physiology, 106, 109–118.

    Article  CAS  Google Scholar 

  98. Creelman, R. A., & Mullet, J. E. (1997). Annual Review of Plant Physiology and Plant Molecular Biology, 48, 355–381.

    Article  CAS  Google Scholar 

  99. Kondo, S., Tomiyama, S., & Seto, H. (2000). Journal of the American Society for Horticultural Science, 125, 282–287.

    CAS  Google Scholar 

  100. Sheng, J., Ye, J., Shen, L., & Luo, Y. (2003). Acta Horticulturae, 620, 119–125.

    CAS  Google Scholar 

  101. Backhausen, J. E., Vetter, S., Baalmann, E., Kitzmann, C., & Scheibe, R. (1998). Planta, 205, 359–366.

    Article  CAS  Google Scholar 

  102. Stadtman, E. R. (1992). Science, 257, 1220–1224.

    Article  CAS  Google Scholar 

  103. Levine, R. L. (2002). Free Radical Biology & Medicine, 32, 790–796.

    Article  CAS  Google Scholar 

  104. Nguyen, A. T., & Donaldson, R. P. (2005). Archives of Biochemistry and Biophysics, 439, 25–31.

    Article  CAS  Google Scholar 

  105. Aguilaniu, H., Gustafsson, L., Rigoulet, M., & Nystrom, T. (2001). Journal of Biological Chemistry, 276, 35396–35404.

    Article  CAS  Google Scholar 

  106. Pua, E., Lim, S. S., Pei, L., & Liu, J. (2000). Australian Journal of Plant Physiology, 27, 1151–1159.

    CAS  Google Scholar 

  107. Sun, W., Van Montagu, M., & Verbruggen, N. (2002). Biochimica et Biophysica Acta, 1577, 1–9.

    Article  CAS  Google Scholar 

  108. Ramakrishna, W., Deng, Z., Ding, C., Handa, A. K., & Ozminkowski, J. R. H. (2003). Plant Physiology, 131, 725–735.

    Article  CAS  Google Scholar 

  109. Neta-Sharir, I., Isaacson, T., Lurie, S., & Weiss, D. (2005). The Plant Cell, 17, 1829–1838.

    Article  CAS  Google Scholar 

  110. Woolf, A. B., & Ferguson, I. B. (2000). Postharvest Biology and Technology, 21, 7–20.

    Article  Google Scholar 

  111. Wang, A. D., Tan, D. M., Tatsuki, M., Kasai, A., Li, T. Z., Saito, H., et al. (2010). Postharvest Biology and Technology, 52, 38–43.

    Article  CAS  Google Scholar 

  112. Asada, K., & Takahashi, M. (1987). Photoinhibition. Amsterdam: Elsevier.

    Google Scholar 

  113. Chen, Z., & Gallie, D. (2006). Plant Physiology, 142, 775–787.

    Article  CAS  Google Scholar 

  114. Atkinson, R. G., Perry, J., Matsui, T., Ross, G. S., & MacRae, E. A. (1996). New Zealand Journal of Crop and Horticultural Science, 24, 103–107.

    Google Scholar 

  115. Puehringer, H. M., Zinoecker, I., Marzban, G., Katinger, H., & Laimer, M. (2003). Gene, 4, 173–183.

    Article  CAS  Google Scholar 

  116. Marzban, G., Mansfeld, A., Herndl, A., Jäger, S., Stoyanova, M. E., Hemmer, W., et al. (2006). Aerobiologia, 22, 237–245.

    Article  Google Scholar 

  117. Maghuly, F., Marzban, G., & Laimer, M. (2009). Nutrients, 1, 119–132.

    Article  CAS  Google Scholar 

  118. Marzban, G., Herndl, A., Pietrozotto, S., Banerjee, S., Obinger, C., Maghuly, F., et al. (2009). Food Chemistry, 112, 803–811.

    Article  CAS  Google Scholar 

  119. Hovmalm, H. A. P., Nybom, H., Barraclough, D., Beuning, L., Bowen, J., Bulley, S., et al. (2006). Acta Horticulturae, 663, 297–300.

    Google Scholar 

  120. Vieths, S., Jankiewicz, A., Schoning, B., & Aulepp, H. (1994). Allergy, 49, 262–271.

    Article  CAS  Google Scholar 

  121. Hsieh, L. S., Moos, M., & Lin, Y. (1995). The Journal of Allergy and Clinical Immunology, 96, 960–970.

    Article  CAS  Google Scholar 

  122. Torre, F. D. L., Santis, L. D., Suarez, M. F., Crespillo, R., & Canovas, F. M. (2006). The Plant Journal, 46, 414–425.

    Article  CAS  Google Scholar 

  123. Akihiro, T., Koike, S., Tani, R., Tominaga, T., Watanabe, S., Iijima, Y., et al. (2008). Plant & Cell Physiology, 49, 1378–1389.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Agricultural Research Council and Technology for Human Resources for Industry Programme, South Africa. The authors wish to thank Prof. Christoph Gehring for critically reading the manuscript and the Department of Biotechnology, University of the Western Cape, South Africa for assistance with proteomics equipment used in the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudius Marondedze.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Table S1

Significant GO terms associated with upregulated proteins in the high firmness phenotype (DOC 33 kb)

Supplementary Table S2

Significant GO terms associated with downregulated proteins in the high firmness phenotype (DOC 32 kb)

Supplementary Table S3

Significant GO terms associated with all differentially regulated proteins (DOC 52 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marondedze, C., Thomas, L.A. Apple Hypanthium Firmness: New Insights from Comparative Proteomics. Appl Biochem Biotechnol 168, 306–326 (2012). https://doi.org/10.1007/s12010-012-9774-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-012-9774-9

Keywords

Navigation