Skip to main content
Log in

Heat Shock Treatment Improves Trametes versicolor Laccase Production

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

An efficient heat shock strategy has been developed to improve laccase production in submerged Trametes versicolor cultures. The optimized heat shock strategy consists of subjecting T. versicolor mycelial pellets to three heat shock treatments at 45 °C for 45 min, starting at culture day 0, with a 24-h interval between treatments. Laccase production increased by more than 1.6-fold relative to the control in both flasks and a 5-L bioreactor because the expression of the laccase gene was enhanced by heat shock induction. The present work demonstrates that heat shock induction is a promising method because it both improves fungal laccase production and has a good potential in industrial application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Baldrian, P. (2006). Fungal laccases—Occurrence and properties. FEMS Microbiology Reviews, 30, 215–242.

    Article  CAS  Google Scholar 

  2. Strong, P. J., & Claus, H. (2011). Laccase: A review of its past and its future in bioremediation. Critical Reviews in Environmental Science and Technology, 41, 373–434.

    Article  Google Scholar 

  3. Osma, J. F., Moilanen, U., Toca-Herrera, J. L., & Rodriguez-Couto, S. (2011). Morphology and laccase production of white-rot fungi grown on wheat bran flakes under semi-solid-state fermentation conditions. FEMS Microbiology Letters, 318, 27–34.

    Article  CAS  Google Scholar 

  4. Susana, R. C., & José, L. T. H. (2006). Industrial and biotechnological applications of laccases: A review. Biotechnology Advances, 24, 500–513.

    Article  Google Scholar 

  5. Li, P., Wang, H. L., Liu, G. S., Li, X., & Yao, J. M. (2011). The effect of carbon source succession on laccase activity in the co-culture process of Ganoderma lucidum and a yeast. Enzyme and Microbial Technology, 48, 1–6.

    Article  CAS  Google Scholar 

  6. Liu, Z. Y., Zhang, D. X., Hua, Z. Z., Li, J. H., Du, G. C., & Chen, J. (2010). Improvement of laccase production and its properties by low-energy ion implantation. Bioprocess and Biosystems Engineering, 33, 639–646.

    Article  CAS  Google Scholar 

  7. Wu, Y. R., Luo, Z. H., Kwok-Kei Chow, R., & Vrijmoed, L. L. (2010). Purification and characterization of an extracellular laccase from the anthracene-degrading fungus Fusarium solani MAS2. Bioresource Technology, 101, 9772–9777.

    Article  CAS  Google Scholar 

  8. Jing, D. B. (2010). Improving the simultaneous production of laccase and lignin peroxidase from Streptomyces lavendulae by medium optimization. Bioresource Technology, 101, 7592–7597.

    Article  CAS  Google Scholar 

  9. Lopez, M., Loera, O., Guerrero-Olazaran, M., Viader-Salvado, J. M., Gallegos-Lopez, J. A., Fernandez, F. J., et al. (2010). Cell growth and Trametes versicolor laccase production in transformed Pichia pastoris cultured by solid-state or submerged fermentations. Journal of Chemical Technology and Biotechnology, 85, 435–440.

    CAS  Google Scholar 

  10. Fonseca, M. I., Shimizu, E., Zapata, P. D., & Villalba, L. L. (2010). Copper inducing effect on laccase production of white rot fungi native from Misiones (Argentina). Enzyme and Microbial Technology, 46, 534–539.

    Article  CAS  Google Scholar 

  11. Umakoshi, H., Yoshimoto, M., Shimanouchi, T., Kuboi, R., & Komasawa, I. (1998). Model system for heat-induced translocation of β-galacosidase across phospholipids bilayer membrane. Biotechnology Progress, 14, 218–226.

    Article  CAS  Google Scholar 

  12. Berovic, M., & Herga, M. (2007). Heat shock on Saccharomyces cerevisiae inoculum increases glycerol production in wine fermentation. Biotechnology Letters, 29, 891–894.

    Article  CAS  Google Scholar 

  13. Himabindu, M., Potumarthi, R., & Jetty, A. (2007). Enhancement of gentamicin production by mutagenesis and non-nutritional stress conditions in Micromonospora echinospora. Process Biochemistry, 42, 1352–1356.

    Article  CAS  Google Scholar 

  14. Babitha, S., Soccol, C. R., & Pandey, A. (2007). Effect of stress on growth, pigment production and morphology of Monascus sp. in solid cultures. Journal of Basic Microbiology, 47, 118–126.

    Article  CAS  Google Scholar 

  15. Zhang, C., & Fevereiro, P. S. (2007). The effect of heat shock on paclitaxel production in Taxus yunnanensis cell suspension cultures—Role of abscisic acid pretreatment. Biotechnology and Bioengineering, 96, 506–514.

    Article  CAS  Google Scholar 

  16. Chen, V. P., Xie, H. Q., Chan, W. K., Leung, K. W., Choi, R. C., & Tsim, K. W. (2010). An induction effect of heat shock on the transcript of globular acetylcholinesterase in NG108-15 cells. Chemico-Biological Interactions, 187, 106–109.

    Article  CAS  Google Scholar 

  17. Chou, C. P. (2007). Engineering cell physiology to enhance recombinant protein production in Escherichia coli. Applied Microbiology and Biotechnology, 76, 521–532.

    Article  CAS  Google Scholar 

  18. Lee, K. T., Chen, S. C., Chiang, B. L., & Yamakawa, T. (2007). Heat-inducible production of beta-glucuronidase in tobacco hairy root cultures. Applied Microbiology and Biotechnology, 73, 1047–1053.

    Article  CAS  Google Scholar 

  19. Wu, M. S., Pan, K. L., & Chou, C. P. (2007). Effect of heat-shock proteins for relieving physiological stress and enhancing the production of penicillin acylase in Escherichia coli. Biotechnology and Bioengineering, 96, 956–966.

    Article  CAS  Google Scholar 

  20. Souza, J. V. B., Silva, E. S., Cavallazzi, J. R. P., & Sobrinho, A. D. (2010). Formulation of a liquid medium with wheat bran for the production of laccase by Trametes versicolor in an air-lift bioreactor. Journal of Food Agriculture and Environment, 8, 394–396.

    CAS  Google Scholar 

  21. Birhanli, E., & Yesilada, O. (2010). Enhanced production of laccase in repeated-batch cultures of Funalia trogii and Trametes versicolor. Biochemical Engineering Journal, 52, 33–37.

    Article  CAS  Google Scholar 

  22. de Souza, E. S., Sampaio, I. D., Freire, A. K. D., da Silva, B. K. S., Sobrinho, A. D., Lima, A. M., et al. (2011). Production of Trametes versicolor laccase by solid state fermentation using a fixed-bed bioreactor. Journal of Food Agriculture and Environment, 9, 55–58.

    Google Scholar 

  23. Piscitelli, A., Giardina, P., Lettera, V., Pezzella, C., Sannia, G., & Faraco, V. (2011). Induction and transcriptional regulation of laccases in fungi. Current Genomics, 12, 104–112.

    Article  CAS  Google Scholar 

  24. Hu, X. K., Zhao, X. H., & Hwang, H. M. (2007). Comparative study of immobilized Trametes versicolor laccase on nanoparticles and kaolinite. Chemosphere, 66, 1618–1626.

    Article  CAS  Google Scholar 

  25. Jung, H., Xu, F., & Li, K. C. (2002). Purification and characterization of laccase from wood-degrading fungus Trichophyton rubrum LKY-7. Enzyme and Microbial Technology, 30, 161–168.

    Article  CAS  Google Scholar 

  26. Collins, P. J., & Dobson, A. (1997). Regulation of laccase gene transcription in Trametes versicolo. Applied and Environmental Microbiology, 63, 3444–3450.

    CAS  Google Scholar 

  27. Tarkka, M. T., Vasara, R., Gorfer, M., & Raudaskoski, M. (2000). Molecular characterization of actin genes from homobasidiomycetes: Two different actin genes from Schizophyllum commune and Suillus bovinus. Gene, 251, 27–35.

    Article  CAS  Google Scholar 

  28. Berovic, M., Pivec, A., Kosmerl, T., Wondra, M., & Celan, S. (2007). Influence of heat shock on glycerol production in alcohol fermentation. Journal of Bioscience and Bioengineering, 103, 135–139.

    Article  CAS  Google Scholar 

  29. Galhaup, C., Goller, S., Peterbauer, C. K., Strauss, J., & Haltrich, D. (2002). Characterization of the major laccase isoenzyme from Trametes pubescens and regulation of its synthesis by metal ions. Microbiology, 148, 2159–2169.

    CAS  Google Scholar 

  30. Okamoto, K., Ito, Y., Shigematsu, I., Yanagi, S. O., & Yanase, H. (2003). Cloning and characterization of a laccase gene from the white-rot basidiomycete Pleurotus ostreatus. Mycoscience, 44, 11–17.

    Article  CAS  Google Scholar 

  31. Saloheimo, M., Niku-Paavola, M. L., & Knowles, J. K. (1991). Isolation and structural analysis of the laccase gene from the lignin-degrading fungus Phlebia radiata. Journal of General Microbiology, 137, 1537–1544.

    Article  CAS  Google Scholar 

  32. Rancaño, G., Lorenzo, M., Molares, N., Rodríguez Couto, S., & Sanromán, Á. (2003). Production of laccase by Trametes versicolor in an airlift fermentor. Process Biochemistry, 39, 467–473.

    Article  Google Scholar 

  33. Tavares, A. P. M., Coelho, M. A. Z., Agapito, M. S. M., Coutinho, J. A. P., & Xavier, A. M. R. B. (2006). Optimization and modeling of laccase production by Trametes versicolor in a bioreactor using statistical experimental design. Applied Biochemistry and Biotechnology, 134, 233–248.

    Article  CAS  Google Scholar 

  34. Thiruchelvam, A. T., & Ramsay, J. A. (2007). Growth and laccase production kinetics of Trametes versicolor in a stirred tank reactor. Applied Microbiology and Biotechnology, 74, 547–554.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was financially supported by the National Natural Science Foundation of China (no. 21176241), the Beijing Natural Science Foundation (no. 2102041), the National Key Technology Research and Development Program of China (no. 2012BAK25B01), and the Knowledge Innovation Program of the Chinese Academy of Sciences (nos. KSCX1-YW-11-D1 and KGCX2-YW-337). The authors thank Dr. Amanda R. Stiles (the Chinese Academy of Sciences Fellowships for Young International Scientists, no. 2011Y1GA01) for her assistance in editing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chun-Zhao Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, F., Guo, C., Wei, T. et al. Heat Shock Treatment Improves Trametes versicolor Laccase Production. Appl Biochem Biotechnol 168, 256–265 (2012). https://doi.org/10.1007/s12010-012-9769-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-012-9769-6

Keywords

Navigation