Skip to main content
Log in

Molecular Identification Using ITS Sequences and Genome Shuffling to Improve 2-Deoxyglucose Tolerance and Xylanase Activity of Marine-Derived Fungus, Aspergillus Sp. NRCF5

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

During the screening of xylanolytic enzyme from marine-derived fungi isolated from the inner tissue of Egyptian soft coral Rhytisma sp., one strain, NRCF5, exhibited high enzyme activity with 0.1 % (w/v) antimetabolite 2-deoxyglucose (2DG) tolerance. This fungal strain was identified as Aspergillus sp. NRCF5 based on its morphological characteristics and internal transcribed spacer (ITS) sequences. The ITS region of hyperactive xylanolytic strain (NRCF5) was amplified, sequenced, and submitted to GenBank (accession no. JQ277356). To apply the fundamental principles of genome shuffling in breeding of xylanase-producing fungi, marine-derived fungus Aspergillus sp. NRCF5 was used as starting strain in this work and applied for induction of genetic variability using different combinations and doses of mutagens. Five mutants with high xylanase activity and 0.25 % (w/v) antimetabolite 2DG tolerance were obtained from the populations generated by the mutation of combination between ultraviolet irradiation (UV, 5 min) and N-methyl-N-nitro-N-nitrosoguanidine (NTG, 100 μg/ml) for 30 (UNA) and 60 (UNB) min as well as NTG (100 μg/ml) and ethidium bromide (250 μg/ml) for 30 (NEA) and 60 (NEB) min. Then, they were subjected for recursive protoplast fusion. Seven hereditarily stable recombinants with high xylanase activity and 1.0 % (w/v) 2DG tolerance were obtained by four rounds of genome shuffling. Among them, a high xylanase-producing recombinant, R4/31, was obtained, which produced 427.5 U/ml xylanase. This value is 6.13-fold higher than that of the starting strain NRCF5 and 2.48-fold higher than that of the parent strain (mutant NEA51). The subculture experiments indicated that the high producer of marine Aspergillus sp. R4/31 fusant was stable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Kumar, R., Singh, S., & Singh, O. M. V. (2008). Bioconversion of lignocellulosic biomass: biochemical and molecular perspectives. Journal of Industrial Microbiology and Biotechnology, 35, 377–391.

    Article  CAS  Google Scholar 

  2. Li, X., She, Y., Sun, B., Song, H., Zhu, Y., Lv, Y., & Song, H. (2010). Purification and characterization of a cellulase-free, thermostable xylanase from Streptomyces rameus L2001 and its biobleaching effect on wheat straw pulp. Biochemical Engineering Journal, 52, 71–78.

    Article  CAS  Google Scholar 

  3. Viikari, L., Kantelinen, A., Sundquist, J., & Linko, M. (2001). Xylanases in bleaching, from an idea to the industry. FEMS Microbiology Reviews, 13, 335–350.

    Article  Google Scholar 

  4. Girio, F. M., Fonseca, C., Carvalheiro, F., Duarte, L. C., Marques, S., & Bogel-lukasik, R. (2010). Hemicelluloses for fuel ethanol: a review. Bioresource Technology, 101, 4775–4800.

    Article  CAS  Google Scholar 

  5. Coughlan, M. P., & Hazlewood, G. P. (1993). β-1,4-d-xylan degrading enzyme systems, biochemistry, molecular biology and applications. Biotechnology and Applied Biochemistry, 17, 259–289.

    CAS  Google Scholar 

  6. Haltrich, D., Nidetzky, B., Kulbe, K. D., Steiner, W., & Zupaneie, S. (1996). Production of fungal xylanases. Bioresource Technology, 58, 137–161.

    Article  CAS  Google Scholar 

  7. Steiner, J., Carmona, P., Ponce, C., Berti, M., & Eyzatuirre, J. (1998). Isolation of mutants of Penicillium purpurogenum with enhanced xylanase and β-xylosidase production. World Journal of Microbiology and Biotechnology, 14, 589–590.

    Article  CAS  Google Scholar 

  8. Stephanopoulos, G. (2002). Metabolic engineering by genome shuffling. Nature Biotechnology, 20, 666–668.

    Article  CAS  Google Scholar 

  9. Petri, R., & Schmidt-Danner, C. (2004). Dealing with complexity: evolutionary engineering and genome shuffling. Current Opinion in Biotechnology, 15, 298–304.

    Article  CAS  Google Scholar 

  10. Lei, Y., Pei, X., Lei, T., Wang, Y. H., & Feng, Y. (2008). Genome shuffling enhanced l-lactic acid production by improving glucose tolerance of Lactobacillus rhamnosus. Journal of Biotechnology, 134, 154–159.

    Article  Google Scholar 

  11. Patnaik, R., Louie, S., Gavrilovic, V., Perry, K., Stemmer, W. P., Ryan, C. M., & Cardayŕe, S. (2002). Genome shuffling of Lactobacillus for improved acid tolerance. Nature Biotechnology, 20, 707–712.

    Article  CAS  Google Scholar 

  12. Wang, Y. H., Li, Y., Pei, X. L., Yu, L., & Feng, Y. (2007). Genome-shuffling improved acid tolerance and l-lactic acid volumetric productivity in Lactobacillus rhamnosus. Journal of Biotechnology, 129, 510–515.

    Article  CAS  Google Scholar 

  13. Dai, M. H., & Copley, S. D. (2004). Genome shuffling improves degradation of the anthropogenic pesticide pentachlorophenol by Sphingobium chlorophenolicum ATCC 39723. Applied and Environmental Microbiology, 70, 2391–2397.

    Article  CAS  Google Scholar 

  14. Hida, H., Yamada, T., & Yamada, Y. (2007). Genome shuffling of Streptomyces sp. U121 for improved production of hydroxycitric acid. Applied Microbiology and Biotechnology, 73, 1387–1393.

    Article  CAS  Google Scholar 

  15. El-Gendy, M. M. A., & El-Bondkly, A. M. A. (2011). Genome shuffling of marine derived bacterium Nocardia sp. ALAA 2000 for improved ayamycin production. Antonie Van Leeuwenhoek, 99, 773–780.

    Article  CAS  Google Scholar 

  16. Chadha, B. S., Jaswinder, K., Rubinder, K., Saini, H. S., & Singh, S. (1999). Xylanase production by Thermomyces lanuginosus wild and mutant strains. World Journal of Microbiology and Biotechnology, 15, 195–198.

    Article  CAS  Google Scholar 

  17. Rajoka, M. I., & Khan, S. (2005). Hyper-production of a thermotolerant β-xylosidase by a deoxy-d-glucose and cycloheximide resistant mutant derivative of Kluyveromyces marxianus PPY 125. European Journal of Botany, 8(2), 177–184.

    CAS  Google Scholar 

  18. Azin, M., & Noroozi, E. (2001). Random mutagenesis and use of 2-deoxy-d-glucose as an antimetabolite for selection of alpha amylase-over producing mutants of Aspergillus oryzae. World Journal of Microbiology and Biotechnology, 17, 747–750.

    Article  CAS  Google Scholar 

  19. Loera, O., & Cordova, J. (2003). Improvement of xylanase production by a parasexual cross between Aspergillus niger strains. Brazilian Archives of Biology and Technology, 46, 177–181.

    Article  CAS  Google Scholar 

  20. Ikram-Ul, H., Hussain, R., Hameed, U., & Javed, M. (2008). Selection of Aspergillus niger mutant using antimetabolite 2-deoxy d-glucose after N-methyl-N-nitro-N-nitrosoguanidine (MNNG) treatment. Pakistan Journal of Botany, 40(6), 2613–2623.

    Google Scholar 

  21. El-Gendy, M. M. A. (2010). Optimization of process parameters for keratinase produced by endophytic Penicillium spp. Morsy1 under solid state fermentation. Applied Biochemistry and Biotechnology, 162, 780–794.

    Article  CAS  Google Scholar 

  22. Yang, V. W., Zhuang, Z., Elegir, G., & Jeffries, T. W. (1995). Alkaline-active xylanase produced by an alkaliphilic Bacillus sp. isolated from kraft pulp. Journal of Industrial Microbiology and Biotechnology, 15, 434–441.

    CAS  Google Scholar 

  23. Kohlmeyer, J., & Kohlmeyer, E. (1979). Marine mycology: the higher fungi. New York: Academic.

    Google Scholar 

  24. Samson, R. A. (1979). A compilation of the Aspergilli described since 1965. Studies in Mycology, 18, 1–38.

    Google Scholar 

  25. Samson, R. A., & Gams, W. (1984). The taxonomic situation in the hyphomycete genera Penicillium, Aspergillus and Fusarium. Antonie Van Leeuwenhoek, 50, 815–824.

    Article  CAS  Google Scholar 

  26. El-Bondkly, A. M. (2006). Gene transfer between different Trichoderma species and Aspergillus niger through intergeneric protoplast fusion to convert ground rice straw to citric acid and cellulases. Applied Biochemistry and Biotechnology, 135(2), 117–132.

    Article  CAS  Google Scholar 

  27. El-Bondkly, A. M. A., & El-Gendy, M. M. A. (2011). Cellulase production from agricultural residues by recombinant fusant strain of a fungal endophyte of the marine sponge Latrunculia corticata for production of ethanol. Antonie Van Leeuwenhoek. doi:10.1007/s10482-011-9639-1.

  28. El-Bondkly, A. M., Aboshosha, A. A. M., Radwan, N. H., & Dora, S. A. (2011). Application and comparison of two different intraspecific protoplast fusion methods in Trichoderma harzianum and their effect on β-glucosidase activity. African Journal of Biotechnology, 10(52), 10683–10690.

    CAS  Google Scholar 

  29. Henry, T., Iwen, P. C., & Hinrichs, S. H. (2000). Identification of Aspergillus species using internal transcribed spacer regions 1 and 2. Journal of Clinical Microbiology, 38, 1510–1515.

    CAS  Google Scholar 

  30. White, T. J., Bruns, T., Lee, S., & Taylor, J. W. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In M. A. Innis, D. H. Gelfand, J. J. Sninsky, & T. J. White (Eds.), PCR protocols: a guide to methods and applications (pp. 315–322). New York: Academic.

    Google Scholar 

  31. Mandels, M., & Sternburg, D. (1976). Recent advances in cellular technology. Journal of Fermentation Technology, 54, 267–286.

    CAS  Google Scholar 

  32. Khan, A. W., Tremblay, D., & LeDuy, A. (1986). Assay of xylanase and xylosidase activities in bacterial and fungal cultures. Enzyme and Microbial Technology, 8(6), 373–377.

    Article  CAS  Google Scholar 

  33. Bailey, M. J., Biely, P., & Poutanen, K. (1992). Interlaboratory testing of methods for assay of xylanase activity. Journal of Biotechnology, 23(3), 257–270.

    Article  CAS  Google Scholar 

  34. Holler, U., Wright, A. D., Matthee, G. F., Konig, G. M., Draeger, S., & Aust, H. J. (2000). Fungi from marine sponges: diversity, biological activity and secondary metabolites. Mycological Research, 104, 1354–1765.

    Article  CAS  Google Scholar 

  35. El-Bondkly, A. M., & El-Gendy, M. M. A. (2010). Keratinolytic activity from new recombinant fusant AYA2000, an endophytic Micromonospora spp. Canadian Journal of Microbiology, 56, 748–760.

    Article  CAS  Google Scholar 

  36. Krisana, A., Rutchadaporn, S., Jarupan, G., Lily, E., Sutipa, T., & Kanyawim, K. (2005). Endo-1,4-β-xylanase B from Aspergillus cf. niger BCC14405 isolated in Thailand: purification, characterization and gene isolation. Journal of Biochemistry and Molecular Biology, 38(1), 17–23.

    Article  CAS  Google Scholar 

  37. Gong, J., Huijie, Z., Zhijun, W., Tao, C., & Xueming, Z. (2009). Genome shuffling: progress and applications for phenotype improvement. Biotechnology Advances, 27, 996–1005.

    Article  Google Scholar 

  38. El-Bondkly, A. M., Aboshosha, A. A. M., Radwan, N. H., & Dora, S. A. (2010). Successive construction of β-glucosidase hyperproducers of Trichoderma harzianum using microbial biotechnology techniques. Journal of Microbial and Biochemical Technology, 2(3), 070–073.

    Article  CAS  Google Scholar 

  39. Xu, F., Jin, H., Li, H., Tao, L., Wang, J., Lv, J., & Chen, S. (2011). Genome shuffling of Trichoderma viride for enhanced cellulase production Ann. Microbiology. doi:10.1007/s13213-011-0284-8.

  40. Zhang, Y., Liu, J. Z., Huang, J. S., & Mao, Z. W. (2010). Genome shuffling of Propionibacterium shermanii for improving vitamin B12 production and comparative proteome analysis. Journal of Biotechnology, 148(2–3), 139–143.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed M. A. El-Bondkly.

Rights and permissions

Reprints and permissions

About this article

Cite this article

El-Bondkly, A.M.A. Molecular Identification Using ITS Sequences and Genome Shuffling to Improve 2-Deoxyglucose Tolerance and Xylanase Activity of Marine-Derived Fungus, Aspergillus Sp. NRCF5. Appl Biochem Biotechnol 167, 2160–2173 (2012). https://doi.org/10.1007/s12010-012-9763-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-012-9763-z

Keywords

Navigation