Skip to main content
Log in

Characterization and Activity Determination of the Human Protein Phosphatase 2A Catalytic Subunit α Expressed in Insect Larvae

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Protein phosphatase 2A is the major enzyme that dephosphorylates the serine/threonine residues of proteins in the cytoplasm of animal cells. This phosphatase is most strongly inhibited by okadaic acid. Besides okadaic acid, several other toxins and antibiotics have been shown to inhibit protein phosphatase 2A, including microsystin-LR, calyculin-A, tautomycib, nodularin, cantharidine, and fostriecin. This makes protein phosphatase 2A a valuable tool for detecting and assaying these toxins. High-scale production of active protein phosphatase 2A requires processing kilograms of animal tissue and involves several chromatographic steps. To avoid this, in this work we report the recombinant expression and characterization of the active catalytic subunit α of the protein phosphatase 2A in Trichoplusia ni insect larvae. Larvae were infected with baculovirus carrying the coding sequence for the catalytic subunit α of protein phosphatase 2A under the control of the polyhedrin promoter and containing a poly-His tag in the carboxyl end. The catalytic subunit was identified in the infected larvae extracts, and it was calculated to be present at 250 μg per gram of infected larvae, by western blot. Affinity chromatography was used for protein purification. Protein purity was determined by western blot. The activity of the enzyme, determined by the p-nitrophenyl phosphate method, was 94 μmol/min/mg of purified protein. The catalytic subunit was further characterized by inhibition with okadaic acid and dinophysis toxin 2. The results presented in this work show that this method allows the production of large quantities of the active enzyme cost-effectively. Also, the enzyme activity was stable up to 2 months at −20 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Cohen, P. (1989). The structure and regulation of protein phosphatases. Annual Review of Biochemistry, 58, 453–508.

    Article  CAS  Google Scholar 

  2. Janssens, V., & Goris, J. (2001). Protein phosphatase 2A: a highly regulated family of serine/threonine phosphatases implicated in cell growth and signalling. Biochemistry Journal, 353, 417–439.

    Article  CAS  Google Scholar 

  3. Arino, J., Woon, C. W., Brautigan, D. L., Miller, T. B., Jr., & Johnson, G. L. (1988). Human liver phosphatase 2A: cDNA and amino acid sequence of two catalytic subunit isotypes. Proceedings of the National Academy of Sciences of the United States of America, 85, 4252–4256.

    Article  CAS  Google Scholar 

  4. Khew-Goodall, Y., & Hemmings, B. A. (1988). Tissue-specific expression of mRNAs encoding alpha- and beta-catalytic subunits of protein phosphatase 2A. FEBS Letters, 238, 265–268.

    Article  CAS  Google Scholar 

  5. Khew-Goodall, Y., Mayer, R. E., Maurer, F., Stone, S. R., & Hemmings, B. A. (1991). Structure and transcriptional regulation of protein phosphatase 2A catalytic subunit genes. Biochemistry, 30, 89–97.

    Article  CAS  Google Scholar 

  6. Bialojan, C., & Takai, A. (1988). Inhibitory effect of a marine-sponge toxin, okadaic acid, on protein phosphatases. Specificity and kinetics. Biochemistry Journal, 256, 283–290.

    CAS  Google Scholar 

  7. Yasumoto, T., & Murata, M. (1993). Marine toxins. Chemical Reviews, 5, 1897–1909.

    Article  Google Scholar 

  8. Honkanen, R. E., Zwiller, J., Moore, R. E., Daily, S. L., Khatra, B. S., Dukelow, M., et al. (1990). Characterization of microcystin-LR, a potent inhibitor of type 1 and type 2A protein phosphatases. Journal of Biological Chemistry, 265, 19401–19404.

    CAS  Google Scholar 

  9. Ishihara, H., Martin, B. L., Brautigan, D. L., Karaki, H., Ozaki, H., Kato, Y., et al. (1989). Calyculin A and okadaic acid: inhibitors of protein phosphatase activity. Biochemical and Biophysical Research Communications, 159, 871–877.

    Article  CAS  Google Scholar 

  10. MacKintosh, C., & Klumpp, S. (1990). Tautomycin from the bacterium Streptomyces verticillatus. Another potent and specific inhibitor of protein phosphatases 1 and 2A. FEBS Letters, 277, 137–140.

    Article  CAS  Google Scholar 

  11. Honkanen, R. E., Dukelow, M., Zwiller, J., Moore, R. E., Khatra, B. S., & Boynton, A. L. (1991). Cyanobacterial nodularin is a potent inhibitor of type 1 and type 2A protein phosphatases. Molecular Pharmacology, 40, 577–583.

    CAS  Google Scholar 

  12. Li, Y. M., & Casida, J. E. (1992). Cantharidin-binding protein: identification as protein phosphatase 2A. Proceedings of the National Academy of Sciences of the United States of America, 89, 11867–11870.

    Article  CAS  Google Scholar 

  13. Walsh, A. H., Cheng, A., & Honkanen, R. E. (1997). Fostriecin, an antitumor antibiotic with inhibitory activity against serine/threonine protein phosphatases types 1 (PP1) and 2A (PP2A), is highly selective for PP2A. FEBS Letters, 416, 230–234.

    Article  CAS  Google Scholar 

  14. Zolnierowicz, S., Van Hoof, C., Andjelkovic, N., Cron, P., Stevens, I., Merlevede, W., et al. (1996). The variable subunit associated with protein phosphatase 2A0 defines a novel multimember family of regulatory subunits. Biochemistry Journal, 317(Pt 1), 187–194.

    CAS  Google Scholar 

  15. Evans, D. R., Myles, T., Hofsteenge, J., & Hemmings, B. A. (1999). Functional expression of human PP2Ac in yeast permits the identification of novel C-terminal and dominant-negative mutant forms. Journal of Biological Chemistry, 274, 24038–24046.

    Article  CAS  Google Scholar 

  16. Swiatek, W., Sugajska, E., Lankiewicz, L., Hemmings, B. A., & Zolnierowicz, S. (2000). Biochemical characterization of recombinant subunits of type 2A protein phosphatase overexpressed in Pichia pastoris. European Journal of Biochemistry, 267, 5209–5216.

    Article  CAS  Google Scholar 

  17. Ikehara, T., Shinjo, F., Ikehara, S., Imamura, S., & Yasumoto, T. (2006). Baculovirus expression, purification, and characterization of human protein phosphatase 2A catalytic subunits alpha and beta. Protein Expression and Purification, 45, 150–156.

    Article  CAS  Google Scholar 

  18. Kamibayashi, C., Estes, R., Lickteig, R. L., Yang, S. I., Craft, C., & Mumby, M. C. (1994). Comparison of heterotrimeric protein phosphatase 2A containing different B subunits. Journal of Biological Chemistry, 269, 20139–20148.

    CAS  Google Scholar 

  19. Myles, T., Schmidt, K., Evans, D. R., Cron, P., & Hemmings, B. A. (2001). Active-site mutations impairing the catalytic function of the catalytic subunit of human protein phosphatase 2A permit baculovirus-mediated overexpression in insect cells. Biochemistry Journal, 357, 225–232.

    Article  CAS  Google Scholar 

  20. Wadzinski, B. E., Eisfelder, B. J., Peruski, L. F., Jr., Mumby, M. C., & Johnson, G. L. (1992). NH2-terminal modification of the phosphatase 2A catalytic subunit allows functional expression in mammalian cells. Journal of Biological Chemistry, 267, 16883–16888.

    CAS  Google Scholar 

  21. Gomez-Sebastian, S., Perez-Filgueira, D. M., Gomez-Casado, E., Nunez, M. C., Sanchez-Ramos, I., Tabares, E., et al. (2008). DIVA diagnostic of Aujeszky's disease using an insect-derived virus glycoprotein E. Journal of Virological Methods, 153, 29–35.

    Article  CAS  Google Scholar 

  22. Medin, J. A., Hunt, L., Gathy, K., Evans, R. K., & Coleman, M. S. (1990). Efficient, low-cost protein factories: expression of human adenosine deaminase in baculovirus-infected insect larvae. Proceedings of the National Academy of Sciences of the United States of America, 87, 2760–2764.

    Article  CAS  Google Scholar 

  23. Perez-Filgueira, D. M., Gonzalez-Camacho, F., Gallardo, C., Resino-Talavan, P., Blanco, E., Gomez-Casado, E., et al. (2006). Optimization and validation of recombinant serological tests for African Swine Fever diagnosis based on detection of the p30 protein produced in Trichoplusia ni larvae. Journal of Clinical Microbiology, 44, 3114–3121.

    Article  CAS  Google Scholar 

  24. Takai, A., & Mieskes, G. (1991). Inhibitory effect of okadaic acid on the p-nitrophenyl phosphate phosphatase activity of protein phosphatases. Biochemistry Journal, 275(Pt 1), 233–239.

    CAS  Google Scholar 

  25. Vieytes, M. R., Fontal, O. I., Leira, F., Baptista de Sousa, J. M., & Botana, L. M. (1997). A fluorescent microplate assay for diarrheic shellfish toxins. Analytical Biochemistry, 248, 258–264.

    Article  CAS  Google Scholar 

  26. Tubaro, A., Florio, C., Luxich, E., Sosa, S., Della Loggia, R., & Yasumoto, T. (1996). A protein phosphatase 2A inhibition assay for a fast and sensitive assessment of okadaic acid contamination in mussels. Toxicon, 34, 743–752.

    Article  CAS  Google Scholar 

  27. Ikehara, T., Imamura, S., Oshiro, N., Ikehara, S., Shinjo, F., & Yasumoto, T. (2008). A protein phosphatase 2A (PP2A) inhibition assay using a recombinant enzyme for rapid detection of microcystins. Toxicon, 51, 1368–1373.

    Article  CAS  Google Scholar 

  28. Aune, T., Larsen, S., Aasen, J. A., Rehmann, N., Satake, M., & Hess, P. (2007). Relative toxicity of dinophysistoxin-2 (DTX-2) compared with okadaic acid, based on acute intraperitoneal toxicity in mice. Toxicon, 49, 1–7.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by the following FEDER cofounded grants: from the Ministerio de Ciencia y Tecnología, Spain (AGL2007-60946/ALI, SAF2009-12581 (subprograma NEF), AGL2009-13581-CO2-01, TRA2009-0189, and AGL2010-17875); from the Xunta de Galicia, Spain (GRC 2010/10, and PGIDT07CSA012261PR, PGDIT 07MMA006261PR, PGIDIT (INCITE) 09MMA003261PR, 2009/XA044, 2009/053 (Consell. Educación), 2008/CP389 EPITOX, Consell. Innovación e Industria, programa IN.CI.TE., and 10PXIB261254 PR); from the EU 7th Framework Program (211326–CP (CONffIDENCE), 265896 BAMMBO, 265409 μAQUA, and 262649 BEADS); and from the Atlantic Area Programme (Interreg IVB Transnational) (2008-1/003 (Atlantox) and 2009-1/117 Pharmatlantic).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to J. A. Rubiolo or L. M. Botana.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rubiolo, J.A., López-Alonso, H., Alfonso, A. et al. Characterization and Activity Determination of the Human Protein Phosphatase 2A Catalytic Subunit α Expressed in Insect Larvae. Appl Biochem Biotechnol 167, 918–928 (2012). https://doi.org/10.1007/s12010-012-9737-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-012-9737-1

Keywords

Navigation