Skip to main content
Log in

Production, Purification, Immobilization, and Characterization of a Thermostable β-Galactosidase from Aspergillus alliaceus

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

A fungal strain isolated from rotten banana and identified as Aspergillus alliaceus was found capable of producing thermostable extracellular β-galactosidase enzyme. Optimum cultural conditions for β-galactosidase production by A. alliaceus were as follows: pH 4.5; temperature, 30 °C; inoculum age, 25 h; and fermentation time, 144 h. Optimum temperature, time, and pH for enzyme substrate reaction were found to be 45 °C, 20 min, and 7.2, respectively, for crude and partially purified enzyme. For immobilized enzyme–substrate reaction, these three variable, temperature, time, and pH were optimized at 50 °C, 40 min, and 7.2, respectively. Glucose was found to inhibit the enzyme activity. The K m values of partially purified and immobilized enzymes were 170 and 210 mM, respectively. Immobilized enzyme retained 43 % of the β-galactosidase activity of partially purified enzyme. There was no significant loss of activity on storage of immobilized beads at 4 °C for 28 days. Immobilized enzyme retained 90 % of the initial activity after being used four times.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Shukla, T. P. (1975). Beta-galactosidase technology: a solution to the lactose problem. CRC Critical Reviews in Food Technology, 5, 325–356.

    CAS  Google Scholar 

  2. Dziezak, J. D. (1991). Enzymes: Catalysts for food processes. Food Technology 45, 78–85.

    Google Scholar 

  3. Godfrey, T. (2000). Developments in speciality enzymes. World Food Ingredients February/March, 30–50.

  4. Pomeranz, Y. (1964). Lactase occurrence and properties. Food Technology, 88, 682.

    Google Scholar 

  5. Wendorff, W. L., et al. (1971). Use of yeast beta-galactosidase in milk and milk products. Journal of Milk Food Technology, 34, 294.

    CAS  Google Scholar 

  6. Manjon, A., et al. (1985). Properties of ß-galactosidase covalently immobilized to glycophase-coated porous glass. Process Biochemistry, 20, 17–22.

    CAS  Google Scholar 

  7. Gekas, V., & López-Leiva, M. (1985). Hydrolysis of lactose: A literature review. Process Biochemistry, 20, 2–12.

    CAS  Google Scholar 

  8. Sarney, D. B., et al. (2000). A novel approach to the recovery of biologically active oligosaccharides from milk using a combination of enzymatic treatment and nanofiltration. Biotechnology and Bioengineering, 69(4), 461–467.

    Article  CAS  Google Scholar 

  9. Sutendra, G., et al. (2007). beta-Galactosidase (Escherichia coli) has a second catalytically important Mg2+ site. Biochemical and Biophysical Research Communications, 352(2), 566–570.

    Article  CAS  Google Scholar 

  10. Craig, D. B., et al. (2000). Escherichia coli beta-galactosidase is heterogeneous with respect to a requirement for magnesium. Biometals, 13(3), 223–229.

    Article  CAS  Google Scholar 

  11. Polizzi, K. M., et al. (2007). Stability of biocatalysts. Current Opinion in Chemical Biology, 11(2), 220–225.

    Article  CAS  Google Scholar 

  12. Berger, J. L., et al. (1995). Immobilization of beta-galactosidases from Thermus aquaticus Yt-1 for Oligosaccharides Synthesis. Biotechnology Techniques, 9(8), 601–606.

    Article  CAS  Google Scholar 

  13. Decleire, M., et al. (1987). Hydrolysis of whey by Kluyveromyces bulgaricus cells immobilized in stabilized alginate and in chitosan beads. Acta Biotechnologica, 7(6), 563–566.

    Article  CAS  Google Scholar 

  14. Bommarius, A. S., & Riebel, B. R. (2004). Biocatalysis: fundamentals and applications. Weinheim: Wiley-VCH.

  15. Carpio, C., et al. (2000). Bone-bound enzymes for food industry application. Food Chemistry, 68(4), 403–409.

    Article  CAS  Google Scholar 

  16. Karel, S. F., et al. (1985). The immobilization of whole cells—engineering principles. Chemical Engineering Science, 40(8), 1321–1354.

    Article  CAS  Google Scholar 

  17. Longo, M. A., et al. (1992). Diffusion of proteases in calcium alginate beads. Enzyme and Microbial Technology, 14(7), 586–590.

    Article  CAS  Google Scholar 

  18. Tanriseven, A., & Dogan, S. (2002). A novel method for the immobilization of beta-galactosidase. Process Biochemistry, 38(1), 27–30.

    Article  CAS  Google Scholar 

  19. Sneh, B., & Stack, J. (1990). Selective medium for isolation of Mycoleptodiscus terrestris from soil sediments of aquatic environments. Applied and Environmental Microbiology, 56(11), 3273–3277.

    CAS  Google Scholar 

  20. John, G. H. (1994). Bergey’s manual of determinative bacteriology. Baltimore: Williams & Wilkins.

  21. Romero, F. J., et al. (2001). Production, purification and partial characterization of two extracellular proteases from Serratia marcescens grown in whey. Process Biochemistry, 36(6), 507–515.

    Article  CAS  Google Scholar 

  22. Lowry, O. H., et al. (1951). Protein measurement with folin phenol reagent. The Journal of Biological Chemistry, 193(1), 265–275.

    CAS  Google Scholar 

  23. Banerjee, M., et al. (1982). Immobilization of yeast-cells containing beta-galactosidase. Biotechnology and Bioengineering, 24(8), 1839–1850.

    Article  CAS  Google Scholar 

  24. Salle, A. J. (1954). Laboratory manual on fundamental principles of bacteriology. New York: McGraw-Hill.

  25. Inchaurrondo, V. A., et al. (1994). Yeast growth and beta-galactosidase production during aerobic batch cultures in lactose-limited synthetic medium. Process Biochemistry, 29(1), 47–54.

    Article  CAS  Google Scholar 

  26. Artolozaga, M. J., et al. (1998). One step partial purification of beta-D-galactosidase from Kluyveromyces marxianus CDB 002 using STREAMLINE-DEAE. Bioseparation, 7(3), 137–143.

    Article  CAS  Google Scholar 

  27. Matheus, A. O. R., & Rivas, N. (2003). Production and partial characterization of beta-galactosidase from Kluyveromyces lactis grown in deproteinized whey. Archivos Latinoamericanos De Nutricion, 53(2), 194–201.

    CAS  Google Scholar 

  28. Hewitt, G. M., & Grootwassink, J. W. D. (1984). Simultaneous production of inulase and lactase in batch and continuous cultures of Kluyveromyces fragilis. Enzyme and Microbial Technology, 6(6), 263–270.

    Article  CAS  Google Scholar 

  29. Ku, M. A., & Hang, Y. D. (1992). Production of yeast lactase from sauerkraut brine. Biotechnology Letters, 14(10), 925–928.

    Article  CAS  Google Scholar 

  30. Chen, K. C., et al. (1992). Search method for the optimal medium for the production of lactase by Kluyveromyces fragilis. Enzyme and Microbial Technology, 14(8), 659–664.

    Article  CAS  Google Scholar 

  31. Menten, L., & Michaelis, M. I. (1913). Die Kinetik der Invertinwirkung. Biochemische Zeitschrift, 49, 333–369.

    Google Scholar 

  32. Ping, Z. A., & Butterfield, D. A. (1992). Spin labeling and kinetic-studies of a membrane-immobilized proteolytic-enzyme. Biotechnology Progress, 8(3), 204–210.

    Article  Google Scholar 

  33. Bowen, W. H., & Lawrence, R. A. (2005). Comparison of the cariogenicity of cola, honey, cow milk, human milk, and sucrose. Pediatrics, 116(4), 921–926.

    Article  Google Scholar 

  34. Palumbo, M. S., et al. (1995). Stability of beta-galactosidase from Aspergillus oryzae and Kluyveromyces lactis in dry milk powders. Journal of Food Science, 60(1), 117–119.

    Article  Google Scholar 

  35. Burin, L., & Buera, M. D. (2002). beta-galactosidase activity as affected by apparent pH and physical properties of reduced moisture systems. Enzyme and Microbial Technology, 30(3), 367–373.

    Article  CAS  Google Scholar 

  36. Van Laere, K. M. J., et al. (2000). Characterization of a novel beta-galactosidase from Bifidobacterium adolescentis DSM 20083 active towards transgalactooligosaccharides. Applied and Environmental Microbiology, 66(4), 1379–1384.

    Article  Google Scholar 

  37. Gonzalez, R. R., & Monsan, P. (1991). Purification and some characteristics of beta-galactosidase from Aspergillus fonsecaeus. Enzyme and Microbial Technology, 13(4), 349–352.

    Article  CAS  Google Scholar 

  38. Hoyoux, A., et al. (2001). Cold-adapted beta-galactosidase from the Antarctic psychrophile Pseudoalteromonas haloplanktis. Applied and Environmental Microbiology, 67(4), 1529–1535.

    Article  CAS  Google Scholar 

  39. Adalberto, P. R., et al. (2010). Effect of divalent metal ions on the activity and stability of β-galactosidase isolated from Kluyveromyces lactis. Journal of Basic and Applied Pharmaceutical Sciences, 31(3), 143–150.

    Google Scholar 

  40. Ansari, S. A., & Husain, Q. (2011). Immobilization of Kluyveromyces lactis beta galactosidase on concanavalin A layered aluminium oxide nanoparticles-Its future aspects in biosensor applications. Journal of Molecular Catalysis B: Enzymatic, 70(3–4), 119–126.

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The authors would like to thank Jadavpur University for financial support for the entire research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lalitagauri Ray.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sen, S., Ray, L. & Chattopadhyay, P. Production, Purification, Immobilization, and Characterization of a Thermostable β-Galactosidase from Aspergillus alliaceus . Appl Biochem Biotechnol 167, 1938–1953 (2012). https://doi.org/10.1007/s12010-012-9732-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-012-9732-6

Keywords

Navigation