Skip to main content

Advertisement

Log in

Expression and Characterization of Codon-Optimized Carbonic Anhydrase from Dunaliella Species for CO2 Sequestration Application

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Carbonic anhydrases (CAs) have been given much attention as biocatalysts for CO2 sequestration process because of their ability to convert CO2 to bicarbonate. Here, we expressed codon-optimized sequence of α-type CA cloned from Dunaliella species (Dsp-aCAopt) and characterized its catalyzing properties to apply for CO2 to calcite formation. The expressed amount of Dsp-aCAopt in Escherichia coli is about 50 mg/L via induction of 1.0 mM isopropyl-β-d-thiogalactopyranoside at 20 °C (for the case of intact Dsp-aCA, negligible). Dsp-aCAopt enzyme shows 47 °C of half-denaturation temperature and show wide pH stability (optimum pH 7.6/10.0). Apparent values of K m and V max for p-nitrophenylacetate substrate are 0.91 mM and 3.303 × 10−5 μM min−1. The effects of metal ions and anions were investigated to find out which factors enhance or inhibit Dsp-aCAopt activity. Finally, we demonstrated that Dsp-aCAopt enzyme can catalyze well the conversion of CO2 to CaCO3, as the calcite form, in the Ca2+ solution [8.9 mg/100 μg (172 U/mg enzyme) with 10 mM of Ca2+]. The obtained expression and characterization results of Dsp-aCAopt would be usefully employed for the development of efficient CA-based system for CO2-converting/capturing processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Puxty, G., Rowland, R., Allport, A., Yang, Q., Bown, M., Burns, R., Maeder, M., & Attalla, M. (2009). Carbon dioxide postcombustion capture: a novel screening study of the carbon dioxide absorption performance of 76 amines. Environmental Science & Technology, 43, 6427–6433.

    Article  CAS  Google Scholar 

  2. Veawab, A., Tontiwachwuthikul, P., & Chakma, A. (1999). Corrosion behavior of carbon steel in the CO2 absorption process using aqueous amine solutions. Industrial and Engineering Chemistry Research, 38, 3917–3924.

    Article  CAS  Google Scholar 

  3. Dawson, B., & Spannagle, M. (2009). The complete guide to climate change (1st ed.). New York: Routledge.

    Google Scholar 

  4. Lee, S. W., Park, S. B., Jeong, S. K., Limc, K. S., Lee, S. H., & Trachtenberg, M. C. (2010). On carbon dioxide storage based on biomineralization strategies. Micron, 41, 273–282.

    Article  CAS  Google Scholar 

  5. Frommer, W. B. (2010). CO2mmon Sense. Science, 327, 275–276.

    Article  CAS  Google Scholar 

  6. Figueroa, J. D., Fout, T., Plasynski, S., McIlvried, H., & Srivastava, R. D. (2008). Advances in CO2 capture technology—The U.S. department of energy's carbon sequestration program. International Journal of Green-House Gas Control, 2, 9–20.

    Article  CAS  Google Scholar 

  7. Puskas, L. G., Inui, M., Zahan, K., & Yukawa, H. (2000). A periplasmic, α-type carbonic anhydrase from Rhodopseudomonas palustris is essential for bicarbonate uptake. Microbiology, 146, 2957–2966.

    CAS  Google Scholar 

  8. Smith, K. S., & Ferry, J. G. (2000). Prokaryotic carbonic anhydrases. FEMS Microbiology Reviews, 24, 335–366.

    Article  CAS  Google Scholar 

  9. Tripp, B. C., Smith, K., & Ferry, J. G. (2001). Carbonic anhydrase: new insights for an ancient enzyme. Journal of Biological Chemistry, 276, 48615–48618.

    Article  CAS  Google Scholar 

  10. So, A. K., Espie, G. S., Williams, E. B., Shively, J. M., Heinhorst, S., & Cannon, G. C. (2004). A novel evolutionary lineage of carbonic anhydrase (ε class) is a component of the carboxysome shell. Journal of Bacteriology, 186, 623–630.

    Article  CAS  Google Scholar 

  11. Madern, D., Ebel, C., & Zaccai, G. (2000). Halophilic adaptation of enzymes. Extremophiles, 4, 91–98.

    Article  CAS  Google Scholar 

  12. Mevarech, M., Frolow, F., & Gloss, L. M. (2000). Halophilic enzymes: proteins with a grain of salt. Biophysical Chemistry, 86, 155–164.

    Article  CAS  Google Scholar 

  13. Szilagyi, F. A. U. A., & Zavodszky, P. (2000). Structural differences between mesophilic, moderately thermophilic and extremely thermophilic protein subunits: results of a comprehensive survey. Structure, 8, 493–504.

    Article  CAS  Google Scholar 

  14. Borowitzka, M. A., & Borowitzka, L. J. (1988). Micro-algal biotechnology. New York: Cambridge University Press.

    Google Scholar 

  15. Fisher, M., Pick, U., & Zamir, A. (1994). A salt-induced 60-kilodalton plasma membrane protein plays a potential role in the extreme halotolerance of the alga Dunaliella. Plant Physiology, 106, 1359–1365.

    CAS  Google Scholar 

  16. Sambrook, J., & Russel, D. W. (2001). Molecular cloning: A laboratory manual (3rd ed.). Cold Spring Harbor: Cold Spring Harbor Laboratory Press.

    Google Scholar 

  17. Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227, 680–685.

    Article  CAS  Google Scholar 

  18. Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254.

    Article  CAS  Google Scholar 

  19. Rickli, E. E., Ghazanfar, S. A. S., Gibbons, B. H., & Edsall, J. T. (1964). Carbonic anhydrases from human erythrocytes: preparation and properties of two enzymes. Journal of Biological Chemistry, 239, 1065–1078.

    CAS  Google Scholar 

  20. Verpoorte, J. A., Mehta, S., & Edsall, J. T. (1967). Esterase activities of human carbonic anhydrases B and C. Journal of Biological Chemistry, 242, 4221–4229.

    CAS  Google Scholar 

  21. Mirjafari, P., Asghari, K., & Mahinpey, N. (2007). Investigating the application of enzyme carbonic anhydrase for CO2 sequestration purposes. Industrial and Engineering Chemistry Research, 46, 921–926.

    Article  CAS  Google Scholar 

  22. Sharma, A., & Bhattacharya. (2010). Enhanced biomimetic sequestration of CO2 into CaCO3 using purified carbonic anhydrase from indigenous bacterial strains. Journal of Molecular Catalysis B: Enzymatic, 67, 122–128.

    Article  CAS  Google Scholar 

  23. Lineweaver, H., & Burk, D. (1934). The determination of enzyme dissociation constants. Journal of the American Chemical Society, 57, 658–666.

    Article  Google Scholar 

  24. Hakan, S., & Beydemir, S. (2012). The impact of heavy metals on the activity of carbonic anhydrase from rainbow trout (Oncorhynchus mykiss) kidney. Toxicology and Industrial Health, 28, 296–305.

    Article  Google Scholar 

  25. Ceyhun, S. B., Sentürk, M., Yerlikaya, Emrah, Erdogan, O., Küfrevioglu, Ö. I., & Ekinci, D. (2011). Purification and characterization of carbonic anhydrase from the teleost fish Dicentrarchus labrax (European seabass) liver and toxicological effects of metals on enzyme activity. Environmental Toxicology and Pharmacology, 32, 69–74.

    Article  CAS  Google Scholar 

  26. Ekinci, D., Ceyhun, S. B., Sentürk, M., Erdem, D., Küfrevioglu, Ö. I., & Supuran, C. T. (2011). Characterization and anions inhibition studies of an α-carbonic anhydrase from the teleost fish Dicentrarchus labrax. Bioorganic & Medicinal Chemistry, 19, 744–748.

    Article  CAS  Google Scholar 

  27. Kupriyanova, E., Villarejo, A., Markelova, A., Gerasimenko, L., Zavarzin, G., Samuelsson, G., Los, D. A., & Pronina, N. (2007). Extracellular carbonic anhydrases of the stromatolite-forming cyanobacterium Microcoleus chthonoplastes. Microbiology, 153, 1149–1156.

    Article  CAS  Google Scholar 

  28. Stahler, N. F., Ganter, L., Katherin, L., Manfred, K., & Stephen, B. (2005). Mutational analysis of the Helicobacter pylori carbonic anhydrases. FEMS Immunology and Medical Microbiology, 44, 183–189.

    Article  Google Scholar 

  29. Innocenti, A., Muhlschegel, F. A., Hall, R. A., Steegborn, C., Scozzafava, A., & Supuran, C. T. (2008). Carbonic anhydrase inhibitors: inhibition of the β-class enzymes from the fungal pathogens Candida albicans and Cryptococcus neoformans with simple anions. Bioorganic & Medicinal Chemistry Letters, 18, 5066–5070.

    Article  CAS  Google Scholar 

  30. Lindskog, S. (1997). Structure and mechanism of carbonic anhydrase. Pharmacology and Therapeutics, 74, 1–20.

    Article  CAS  Google Scholar 

  31. Kuhad, R. C., Chopra, P., Battan, B., Kapoor, M., & Kuhar, S. (2006). Production, partial purification and characterization of a thermo-alkali stable xylanase from Bacillus sp. RPP-1. Indian Journal of Microbiology, 46, 13–23.

    CAS  Google Scholar 

  32. Sharma, A., Bhattacharya, A., & Singh, S. (2009). Purification and characterization of an extracellular carbonic anhydrase from Pseudomonas fragi. Process Biochemistry, 44, 1293–1297.

    Article  CAS  Google Scholar 

  33. de Leeuw, N. H., & Parker, S. C. (1998). Surface structure and morphology of calcium carbonate polymorphs calcite, aragonite, and vaterite: an atomistic approach. Journal of Physical Chemistry B, 102(384), 2914–2922.

    Article  Google Scholar 

  34. Ouhenia, S., Chateigner, D., Belkhir, M. A., Guilmeau, E., & Krauss, C. (2008). Synthesis of calcium carbonate polymorphs in the presence of polyacrylic acid. Journal of Crystal Growth, 310, 2832–2841.

    Article  CAS  Google Scholar 

  35. Li, W., Liu, L., Chen, W., Yu, L., Li, W., & Yu, H. (2010). Calcium carbonate precipitation and crystal morphology induced by microbial carbonic anhydrase and other biological factors. Process Biochemistry, 45, 1017–1021.

    Article  CAS  Google Scholar 

  36. Vinoba, M., Bhagiyalakshmi, M., Jeong, S. K., Yoon, Y. I., & Nam, S. C. (2012). Carbonic anhydrase conjugated to nanosilver immobilized onto mesoporous SBA-15 for sequestration of CO2. Journal of Molecular Catalysis B: Enzymatic, 75, 60–67.

    Article  CAS  Google Scholar 

  37. Kim, I. G., Jo, B. H., Kang, D. G., Kim, C. S., Choi, Y. S., & Cha, H. J. (2012). Biomineralization-based conversion of carbon dioxide to calcium carbonate using recombinant carbonic anhydrase. Chemosphere, 87, 1091–1096.

    Article  CAS  Google Scholar 

  38. Garcia-Carmona, J., Morales, J. G., & Clemente, R. R. (2003). Morphological control of precipitated calcite obtained by adjusting the electrical conductivity in the Ca(OH)2–H2O–CO2 system. Journal of Crystal Growth, 249, 561–571.

    Article  CAS  Google Scholar 

  39. Vinoba, M., Kim, D. H., Lim, K. S., Jeong, S. K., Lee, S. W., & Alagar, M. (2011). Biomimetic sequestration of CO2 and reformation to CACO3 using bovine carbonic anhydrase immobilized on SBA-15. Energy & Fuels, 25, 438–445.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Research Foundation of Korea Grant funded by the Korean Government (MEST) (NRF-C1ABA001-2010-0020501).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jinwon Lee or Seung Pil Pack.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kanth, B.K., Min, K., Kumari, S. et al. Expression and Characterization of Codon-Optimized Carbonic Anhydrase from Dunaliella Species for CO2 Sequestration Application. Appl Biochem Biotechnol 167, 2341–2356 (2012). https://doi.org/10.1007/s12010-012-9729-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-012-9729-1

Keywords

Navigation