Skip to main content
Log in

Amperometric Vitamin C Biosensor Based on the Immobilization of Ascorbate Oxidase into the Biocompatible Sandwich-Type Composite Film

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Ascorbate oxidase (AO), a biologically active macromolecule, was successfully immobilized into a biocompatible sandwich-type composite film for developing the vitamin C (VC) biosensor, and the content of VC in commercial juices was amperometrically determined. The biocompatible and conducting poly(3,4-ethylenedioxythiophene) composite film and highly stable and selective multiwalled carbon nanotubes –Nafion composite film were prepared as inner and outer films of biosensor. AO molecules were immobilized between these two composite films. The as-fabricated biosensor displayed an excellent bioelectrocatalytic performance towards the oxidation of VC, a fast current response, a low working potential, a high sensitivity, a wide linear range, and a low detection limit. Moreover, the working mechanism of the biosensor was proposed, and its kinetics was also discussed. In addition, the specificity, reproducibility, and feasibility of the as-fabricated biosensor were also evaluated. Good results of the VC determination in commercial juices indicated that the as-fabricated biosensor was a potential candidate for the electrochemical determination of VC in agricultural crops. Inner and outer films provided a promising platform for the immobilization of biologically active species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Yang, W., Ratinac, K. R., Ringer, S. P., Thordarson, P., Gooding, J. J., & Braet, F. (2010). Angewandte Chemie International Edition, 49, 2114–2138.

    Article  CAS  Google Scholar 

  2. Malhotra, B. D., Singhal, R., Chaubey, A., Sharma, S. K., & Kumar, A. (2005). Current Applied Physics, 5, 92–97.

    Article  Google Scholar 

  3. Malhotra, B. D., Chaubey, A., & Singh, S. P. (2006). Analytica Chimica Acta, 578, 59–74.

    Article  CAS  Google Scholar 

  4. Gerard, M., Chaubey, A., & Malhotra, B. D. (2002). Biosensors and Bioelectronics, 17, 345–359.

    Article  CAS  Google Scholar 

  5. Groenendaal, B. L., Jonas, F., Freitag, D., Pielartzik, H., & Reynolds, J. R. (2000). Advanced Materials, 12, 481–494.

    Article  CAS  Google Scholar 

  6. Groenendaal, L. B., Zotti, G., Aubert, P. H., Waybright, S. M., & Reynolds, J. R. (2003). Advanced Materials, 15, 855–879.

    Article  CAS  Google Scholar 

  7. Kirchmeyer, S., & Reuter, K. (2005). Journal of Materials Chemistry, 15, 2077–2088.

    Article  CAS  Google Scholar 

  8. Elschner, A., Kirchmeyer, S., Lövenich, W., Merker, U., & Reuter, K. (2010). PEDOT: Principles and applications of an intrinsically conductive polymer. Boca Raton: CRC.

    Book  Google Scholar 

  9. Sakmeche, N., Aeiyach, S., Aaron, J. J., Jouini, M., Lacroix, J. C., & Lacaze, P. C. (1999). Langmuir, 15, 2566–2574.

    Article  CAS  Google Scholar 

  10. Tsakova, V., Winkels, S., & Schultze, J. W. (2000). Electrochimica Acta, 46, 759–768.

    Article  CAS  Google Scholar 

  11. Zhang, S. S., Hou, J., Zhang, R., Xu, J. K., Nie, G. M., & Pu, S. Z. (2006). European Polymer Journal, 42, 149–160.

    Article  CAS  Google Scholar 

  12. Morán, M. C., Pinazo, A., Pérez, L., Clapés, P., Angelet, M., Garcia, M. T., et al. (2004). Green Chemistry, 6, 233–240.

    Article  Google Scholar 

  13. Nnanna, I. A., & Xia, J. (2001). Protein-based surfctants: synthesis, physicchemical properties and applications. NewYork: Marcel Dekker.

    Google Scholar 

  14. Clapes, P., & Infante, M. R. (2002). Biocatalysis and Biotransformation, 20, 215–233.

    Article  CAS  Google Scholar 

  15. Wen, Y. P., Xu, J. K., He, H. H., Lu, B. Y., Li, Y. Z., & Dong, B. (2009). Journal of Electroanalytical Chemistry, 63, 449–458.

    Google Scholar 

  16. Dobbelin, M., Marcilla, R., Pozo-Gonzalo, C., & Mecerreyes, D. (2010). Journal of Materials Chemistry, 20, 7613–7622.

    Article  Google Scholar 

  17. Randriamahazaka, H., Plesse, C., Teyssié, D., & Chevrot, C. (2005). Electrochimica Acta, 504, 222–4229.

    Google Scholar 

  18. Randriamahazaka, H., Plesse, C., Teyssié, D., & Chevrot, C. (2003). Electrochemistry Communications, 5, 613–617.

    Article  CAS  Google Scholar 

  19. Ahmad, S., Deepa, M., & Singh, S. (2007). Langmuir, 23, 11430–11433.

    Article  CAS  Google Scholar 

  20. Santhosh, P., Manesh, K. M., Uthayakumar, S., Komathi, S., Gopalan, A. I., & Lee, K. P. (2009). Bioelectrochemistry, 75, 61–66.

    Article  CAS  Google Scholar 

  21. Serafín, V., Agüí, L., Yáñez-Sedeño, P., & Pingarrón, J. M. (2010). Journal of Electroanalytical Chemistry, 656, 152–158.

    Article  Google Scholar 

  22. Dong, B., Zhang, S. S., Zheng, L. Q., & Xu, J. K. (2008). Journal of Electroanalytical Chemistry, 619–620, 193–196.

    Article  Google Scholar 

  23. Holbrey, J. D., Reichert, W. M., Swatloski, R. P., Broker, G. A., Pitner, W. R., Seddon, K. R., et al. (2002). Green Chemistry, 4, 407–413.

    Article  CAS  Google Scholar 

  24. Tan, Y. Y., Guo, X. X., Zhang, J. H., & Kan, J. Q. (2010). Biosensors and Bioelectronics, 25, 1681–1687.

    Article  CAS  Google Scholar 

  25. Ndiaye, C., Xu, S. Y., & Wang, Z. (2009). Food Chemistry, 113, 92–95.

  26. Li, S., Tan, Y., Wang, P., & Kan, J. Q. (2010). Sensors and Actuators B: Chemical, 144, 18–22.

    Article  Google Scholar 

  27. Jiang, Y., Wang, A., & Kan, J. Q. (2007). Sensors and Actuators B: Chemical, 124, 529–534.

    Article  Google Scholar 

  28. Wen, Y. P., Duan, X. M., Xu, J. K., Yue R. R., Li, D., Liu M., Lu, L. M., & He, H. H. (2012). Journal of Solid State Electrochemistry (accepted).

  29. Wang, J. (2005). Electroanalysis, 17, 7–14.

    Article  CAS  Google Scholar 

  30. Ahammad, A. J., Lee, J. J., & Rahman, M. (2009). Sensors-basel, 9, 2289–2319.

    Article  CAS  Google Scholar 

  31. Zengin, H., Zhou, W., Jin, J., Czerw, R., Smith, D. W., Jr., Echegoyen, L., et al. (2002). Advanced Materials, 14, 1480–1483. 464.

    Article  CAS  Google Scholar 

  32. Wei, Z., Wan, M., Lin, T., & Dai, L. (2003). Advanced Materials, 15, 136–139.

    Article  CAS  Google Scholar 

  33. Santhosh, P., Gopalan, A., & Lee, K. P. (2006). Journal of Catalysis, 238, 178–185.

    Article  Google Scholar 

  34. Yang, M. H., Jiang, J. H., Yang, Y. H., Chen, X. H., Shen, G. L., & Yu, R. Q. (2006). Biosensors and Bioelectronics, 21, 1791–1797. 468.

    Article  CAS  Google Scholar 

  35. Liu, M., Wen, Y. P., Li, D., He, H. H., Xu, J. K., Liu, C. C., et al. (2011). Journal of Applied Polymer Science, 122, 1142–1142. 470.

    Article  CAS  Google Scholar 

  36. Liu, M., Wen, Y. P., Xu, J. K., He, H. H., Li, D., Yue, R. R., et al. (2011). Analytical Sciences, 27, 477–482.

    Article  Google Scholar 

  37. Wang, J., Musameh, M., & Lin, Y. (2003). Journal of the American Chemical Society, 125, 2408–2409.

    Article  CAS  Google Scholar 

  38. Tsai, Y. C., & Shiu, C. C. (2007). Sensors and Actuators B: Chemical, 125, 10–16.

    Article  Google Scholar 

  39. Tsai, Y. C., Chen, J. M., Li, S. C., & Frank, M. (2004). Electrochemistry Communications, 6, 917–922.

    Article  CAS  Google Scholar 

  40. Xu, J. J., Yu, Z. H., & Chen, H. Y. (2002). Analytica Chimica Acta, 463, 239–247.

    Article  CAS  Google Scholar 

  41. Moore, C. M., Akers, N. L., Hill, A. D., Johnson, Z. C., & Minteer, S. D. (2004). Biomacromolecules, 5, 1241–1247.

    Article  CAS  Google Scholar 

  42. Liang, Z. X., Zhao, T. S., & Prabhuram, J. (2006). Journal of Electrochimica Acta, 51, 6412–6418.

    Article  CAS  Google Scholar 

  43. Karyakin, A. A., Kotelnikova, E. A., Lukachova, L. V., Karyakina, E. E., & Wang, J. (2002). Analytical Chemistry, 74, 1597–1603.

    Article  CAS  Google Scholar 

  44. Messerschmidt, A., & Huber, R. (1990). European Journal of Biochemistry, 187, 341–352. 481.

    Article  CAS  Google Scholar 

  45. Messerschmidt, A., Ladenstein, R., Huber, R., Bolognesi, M., Avigliano, L., Petruzzelli, R., et al. (1992). Journal of Molecular Biology, 224, 179–205.

    Article  CAS  Google Scholar 

  46. Carvalho, L. B., Lima, C. J., & Medeiros, P. H. (1981). Phytochemistry, 20, 2423–2424.

    Article  CAS  Google Scholar 

  47. Farver, O., Wherland, S., & Pecht, I. (1994). Journal of Biological Chemistry, 269, 22933–22936.

    CAS  Google Scholar 

  48. Wen, Y. P., Lu, L. M., Li, D., Liu, M., He, H. H., & Xu, J. K. (2012). Chinese Chemical Letters, 23, 221–224.

    Article  CAS  Google Scholar 

  49. Liu, M., Wen, Y., Li, D., Yue, R., Xu, J., & He, H. (2011). Sensors and Actuators B: Chemical, 159, 277–285.

    Article  CAS  Google Scholar 

  50. Chauhan, N., Priyanka, T. D., & Pundir, C. S. (2010). Journal of Molecular Catalysis B: Enzymatic, 67, 66–71.

    Article  CAS  Google Scholar 

  51. Sezgintürk, M. K., Koca, H. B., Özben, Y. S., & Dinkaya, E. (2010). Artificial Cells, Blood Substitutes, 38, 215–221.

    Article  Google Scholar 

  52. Chauhan, N., Narang, J., & Pundir, C. S. (2011). Analyst, 136, 1938–1945.

    Article  CAS  Google Scholar 

  53. Marangoni, A. (2003). Enzyme kinetics: A modern approach. Chichester: Wiley.

    Google Scholar 

  54. Limoges, B., Marchal, D., Mavré, F., & Savéant, J. M. (2006). Journal of the American Chemical Society, 128, 2084–2092.

    Article  CAS  Google Scholar 

  55. Limoges, B., Marchal, D., Mavré, F., & Savéant, J. M. (2008). Journal of the American Chemical Society, 130, 7276–7285.

    Article  CAS  Google Scholar 

  56. Shu, F., & Wilson, G. (1976). Analytical Chemistry, 48, 1679–1686.

    Article  CAS  Google Scholar 

  57. Kamin, R., & Wilson, G. (1980). Analytical Chemistry, 52, 1198–11205.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

NSFC (50963002 and 51073074), Key Projects in the National Science & Technology Pillar Program in the Eleventh Five-Year Plan Period (2006BAD02A04, 2006BAD01A01), Jiangxi Provincial Department of Science and Technology (2006BAD01A01-2-5), Jiangxi Provincial Department of Education (GJJ11590 and GJJ10678), Natural Science Foundation of Jiangxi Province (2010GZH0041), and Key Laboratory of Photochemical Conversion and Optoelectronic Materials, TIPC, are acknowledged for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jingkun Xu or Haohua He.

Electronic Supplementary Materials

Below is the link to the electronic supplementary material.

ESM 1

(DOC 377 kb)

ESM 2

(DOC 40.5 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wen, Y., Xu, J., Liu, M. et al. Amperometric Vitamin C Biosensor Based on the Immobilization of Ascorbate Oxidase into the Biocompatible Sandwich-Type Composite Film. Appl Biochem Biotechnol 167, 2023–2038 (2012). https://doi.org/10.1007/s12010-012-9711-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-012-9711-y

Keywords

Navigation