Skip to main content
Log in

Power Generation Capabilities of Microbial Fuel Cells with Different Oxygen Supplies in the Cathodic Chamber

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Two microbial fuel cells (MFCs) inoculated with activated sludge of a wastewater treatment plant were constructed. Oxygen was provided by mechanical aeration in the cathodic chamber of one MFC, whereas it was obtained by the photosynthesis of algae in the other. Electrogenic capabilities of both MFCs were compared under the same operational conditions. Results showed that the MFC with mechanical aeration in the cathodic chamber displayed higher power output than the one with photosynthesis of algae. Good linear relationship between power density and chemical oxygen demand (COD) loading rate was obtained only on the MFC with mechanical aeration. Furthermore, the relationships between power density and effluent COD and between Coulombic efficiency and COD loading rate can only be expressed as binary quadratic equations for the MFC with mechanical aeration and not for the one with photosynthesis of algae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Logan, B. E., & Regan, J. M. (2006). Electricity-producing bacterial communities in microbial fuel cells. Trends in Microbiology, 14, 512–518.

    Article  CAS  Google Scholar 

  2. You, S. J., Zhao, Q. L., Jiang, J. Q., & Zhang, J. N. (2006). Treatment of domestic wastewater with simultaneous electricity generation in microbial fuel cell under continuous operation. Chemical and Biochemical Engineering Quarterly, 20, 407–412.

    CAS  Google Scholar 

  3. Kim, H. J., Park, H. S., Hyun, M. S., Chang, I. S., Kim, M., & Kim, B. H. (2002). A mediator-less microbial fuel cell using a metal reducing bacterium, Shewanella putrefacians. Enzyme and Microbial Technology, 30, 145–152.

    Article  CAS  Google Scholar 

  4. Rabaey, K., & Verstraete, W. (2005). Microbial fuel cells: Novel biotechnology for energy generation. Trends in Biotechnology, 23, 291–298.

    Article  CAS  Google Scholar 

  5. Oh, S., & Logan, B. (2006). Proton exchange membrane and electrode surface areas as factors that affect power generation in microbial fuel cells. Applied Microbiology and Biotechnology, 70, 162–169.

    Article  CAS  Google Scholar 

  6. Ieropoulos, I., Winfield, J., & Greenman, J. (2010). Effects of flow-rate, inoculum and time on the internal resistance of microbial fuel cells. Bioresource Technology, 101, 3520–3525.

    Article  CAS  Google Scholar 

  7. Gil, G. C., Chang, L. S., Kim, B. H., Kim, M., Jang, J. K., Park, H. S., et al. (2003). Operational parameters affecting the performance of a mediator-less microbial fuel cell. Biosensors and Bioelectronics, 18, 327–334.

    Article  CAS  Google Scholar 

  8. Kang, K. H., Jang, J. K., Pham, T. H., Moon, H., Chang, I. S., & Kim, B. H. (2003). A microbial fuel cell with improved cathode reaction as a low biochemical oxygen demand sensor. Biotechnology Letters, 25, 1357–1361.

    Article  CAS  Google Scholar 

  9. Pham, T. H., Jang, J. K., Chang, I. S., & Kim, B. H. (2004). Improvement of cathode reaction of a mediatorless microbial fuel cell. Journal of Microbiology and Biotechnology, 14, 324–329.

    CAS  Google Scholar 

  10. Rodrigo, M. A., Cañizares, P., & Lobato, J. (2010). Effect of the electron-acceptors on the performance of a MFC. Bioresource Technology, 101, 7014–7018.

    Article  CAS  Google Scholar 

  11. Rosenbaum, M., He, Z., & Angenent, L. T. (2010). Light energy to bioelectricity: Photosynthetic microbial fuel cells. Current Opinion in Biotechnology, 21, 259–264.

    Article  CAS  Google Scholar 

  12. Strik, D. P. B. T. B., Terlouw, H., Hamelers, H. V. M., & Buisman, C. J. N. (2008). Renewable sustainable biocatalyzed electricity production in a photosynthetic algal microbial fuel cell (PAMFC). Applied Microbiology and Biotechnology, 81, 659–668.

    Article  CAS  Google Scholar 

  13. Schamphelaire, L. D., & Verstraete, W. (2009). Revival of the biological sunlight-to-biogas energy conversion system. Biotechnology and Bioengineering, 103, 296–304.

    Article  Google Scholar 

  14. Wang, X., Feng, Y., Liu, J., Lee, H., Li, C., Li, N., et al. (2010). Sequestration of CO2 discharged from anode by algal cathode in microbial carbon capture cells (MCCs). Biosensors and Bioelectronics, 25, 2639–2643.

    Article  CAS  Google Scholar 

  15. Rodrigo, M. A., Cañizares, P., Lobato, R., Paz, R., Sáez, C., & Linares, J. J. (2007). Production of electricity from the treatment of urban waste water using a microbial fuel cell. Journal of Power Sources, 169, 198–204.

    Article  CAS  Google Scholar 

  16. Mohan, S. V., Mohanakrishna, G., & Sarma, P. N. (2010). Composite vegetable waste as renewable resource for bioelectricity generation through non-catalyzed open-air cathode microbial fuel cell. Bioresource Technology, 101, 970–976.

    Article  Google Scholar 

  17. Min, B., & Logan, B. E. (2004). Continuous electricity generation from domestic wastewater and organic substrates in a flat plate microbial fuel cell. Environmental Science and Technology, 38, 5809–5814.

    Article  CAS  Google Scholar 

  18. Wang, X., Feng, Y., & Lee, J. H. (2008). Electricity production from beer brewery wastewater using single chamber microbial fuel cell. Water Science and Technology, 57, 1117–1121.

    Article  CAS  Google Scholar 

  19. Juang, D. F., Yang, P. C., & Kuo, T. H. (2012). Effects of flow rate and COD removal characteristics on power generation performance of microbial fuel cells. International Journal of Environmental Science and Technology, 9, 267–280.

    Article  Google Scholar 

  20. Clesceri, L. S., Greenberg, A. E., & Eaton, A. D. (2001). Standard methods for the examination of water and wastewater. American Public Health Association (APHA), American Water Works Association (AWWA) and Water Environment Federation (WEF).

  21. Behera, M., & Ghangrekar, M. M. (2009). Performance of microbial fuel cell in response to change in sludge loading rate at different anodic feed pH. Bioresource Technology, 100, 5114–5121.

    Article  CAS  Google Scholar 

  22. Rodrigo, M. A., Cañizares, P., García, H., Linares, J. J., & Lobato, J. (2009). Study of the acclimation stage and of the effect of the biodegradability on the performance of a microbial fuel cell. Bioresource Technology, 100, 4704–4710.

    Article  CAS  Google Scholar 

  23. Sun, J., Hu, Y., Bi, Z., & Cao, Y. (2009). Improved performance of air-cathode single-chamber microbial fuel cell for wastewater treatment using microfiltration membranes and multiple sludge inoculation. Journal of Power Sources, 187, 471–479.

    Article  CAS  Google Scholar 

  24. Jiang, J., Zhaom, Q., Zhang, J., Zhang, G., & Lee, D. (2009). Electricity generation from bio-treatment of sewage sludge with microbial fuel cell. Bioresource Technology, 100, 5808–5812.

    Article  CAS  Google Scholar 

  25. Ghangrekar, M. M., & Shinde, V. B. (2007). Performance of membrane-less microbial fuel cell treating wastewater and effect of electrode distance and area on electricity production. Bioresource Technology, 98, 2879–2885.

    Article  CAS  Google Scholar 

  26. Teneva, I., Dzhambazov, B., Koleva, L., Mladenov, R., & Schirmer, K. (2005). Toxic potential of five freshwater Phormidium species (Cyanoprokaryota). Toxicon, 45, 711–725.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors would like to express their gratitude and appreciation to the National Science Council (NSC) of Taiwan for the financial support of this research under contract no. NSC-99-2221-E-276-004-.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Der-Fong Juang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Juang, DF., Lee, CH., Hsueh, SC. et al. Power Generation Capabilities of Microbial Fuel Cells with Different Oxygen Supplies in the Cathodic Chamber. Appl Biochem Biotechnol 167, 714–731 (2012). https://doi.org/10.1007/s12010-012-9708-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-012-9708-6

Keywords

Navigation