Applied Biochemistry and Biotechnology

, Volume 167, Issue 2, pp 338–347 | Cite as

Elimination of Acetate Production to Improve Ethanol Yield During Continuous Synthesis Gas Fermentation by Engineered Biocatalyst Clostridium sp. MTEtOH550

  • Vel Berzin
  • Michael Kiriukhin
  • Michael TyurinEmail author


Acetogen strain Clostridum sp. MT653 produced acetate 273 mM (p < 0.005) and ethanol 250 mM (p < 0.005) from synthesis gas blend mixture of 64 % CO and 36 % H2. Clostridum sp. MT653 was metabolically engineered to the biocatalyst strain Clostridium sp. MTEtOH550. The biocatalyst increased ethanol yield to 590 mM with no acetate production during single-stage continuous syngas fermentation due to expression of synthetic adh cloned in a multi-copy number expression vector. The acetate production was eliminated by inactivation of the pta gene in Clostridium sp. MTEtOH550. Gene introduction and gene elimination were achieved only using Syngas Biofuels Energy, Inc. electroporation generator. The electrotransformation efficiencies were 8.0 ± 0.2 × 106 per microgram of transforming DNA of the expression vector at cell viability ~15 %. The frequency of suicidal vector integration to inactivate pta was ~10−5 per the number of recipient cells. This is the first report on elimination of acetate production and overexpression of synthetic adh gene to engineer acetogen biocatalyst for selective biofuel ethanol production during continuous syngas fermentation.


Acetogens PTA inactivation Synthetic ADH Ethanol production Syngas fermentation Electrotransformation 



The research was supported by the funds of Syngas Biofuels Energy, Inc. Syngas Biofuels Energy, Inc. is the sole distributor of the electroporation and electrofusion equipment:

Conflict of Interest

The authors declare that they have no conflict of interest.


  1. 1.
    Demain, A. L. (2009). Journal of Industrial Microbiology and Biotechnology, 36(3), 319–332.CrossRefGoogle Scholar
  2. 2.
    Fischer, C. R., Klein-Marcuschamer, D., & Stephanopoulos, G. (2008). Metabolic Engineering, 10(6), 295–304.CrossRefGoogle Scholar
  3. 3.
    Köpke, M., Michalcea, C., Liew, F.-M., Tizard, J. H., Ali, M. S., Conolly, J. J., et al. (2011). Applied and Environmental Microbiology, 77(15), 5467–5475.CrossRefGoogle Scholar
  4. 4.
    Abubackar, N. H., Veiga, M. C., & Kennes, C. (2011). Biofuels, Bioproducts and Biorefining, 5(1), 93–114.CrossRefGoogle Scholar
  5. 5.
    Gaddy, J.L., Arora, D.D., Ko, C.-W., Phillips, J.R., Basu, R., Wikstrom, C.V., (2001). Methods for increasing the production of ethanol from microbial fermentation. US Patent 7285402.Google Scholar
  6. 6.
    Tyurin, M., Kiryukhin, M., & Berzin, V. (2012). Journal of Biotechnology and Research, 4, 1–12.Google Scholar
  7. 7.
    Paul, D., Austin, F. W., Arick, T., Bridges, S. M., Burgess, S. C., Dandass, Y. S., et al. (2010). Journal of Bacteriology, 192(20), 5554–5555.CrossRefGoogle Scholar
  8. 8.
    Tanner, R. S., Miller, L. M., & Yang, D. (1993). Clostridium ljungdahlii sp. nov., an acetogenic species in clostridial rRNA homology group I. International Journal of Systematic Bacteriology, 43(2), 232–236.CrossRefGoogle Scholar
  9. 9.
    Tyurin, M.V. (1992). The method and apparatus for electric cell treatment using partial capacitor discharge via the sample and the power tetrode. Russian Patent 2005776.Google Scholar
  10. 10.
    Tyurin, M. V., Desai, S. G., & Lynd, L. R. (2004). Applied and Environmental Microbiology, 70, 883–890.CrossRefGoogle Scholar
  11. 11.
    Tyurin, M. V., Sullivan, C. R., & Lynd, L. R. (2005). Applied and Environmental Microbiology, 71, 8069–8076.CrossRefGoogle Scholar
  12. 12.
    Bryksin, A. V., & Matsumura, I. (2010). PLoS One, 5(10), e13244. doi: 10.1371/journal.pone.0013244.CrossRefGoogle Scholar
  13. 13.
    Ross, S. M. (2000). Introduction to probability and statistics for engineers and scientists (2nd ed.). San Diego: Academic Press, Inc.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Syngas Biofuels Energy, Inc.HoustonUSA
  2. 2.Ajinomoto-Genetika Research InstituteMoscowRussia

Personalised recommendations