Advertisement

Applied Biochemistry and Biotechnology

, Volume 167, Issue 2, pp 298–313 | Cite as

A Study on the Stability and Enzymatic Activity of Yeast Alcohol Dehydrogenase in Presence of the Self-Assembling Block Copolymer Poloxamer 407

  • Stefania PucciarelliEmail author
  • Giulia Bonacucina
  • Franco Bernabucci
  • Marco Cespi
  • Giovanna Mencarelli
  • Giusi Serena De Fronzo
  • Paolo Natalini
  • Giovanni Filippo Palmieri
Article

Abstract

Yeast alcohol dehydrogenase (ADH) is an enzyme widely studied for biotechnological applications due to its involvement in fermentation industry, and various attempts to improve its catalytic properties and its thermal stability have been carried out. In this paper, the influence of a block copolymer (Poloxamer 407) on ADH enzymatic activity and thermal behaviour has been studied in order to get new insights about the use of poloxamers in formulation of sustained release systems for therapeutic proteins. Poloxamer 407 has the ability to form micelles and gel due to its self-assembling and thermoresponsive properties. The effect of the copolymer towards thermal stress and pH changes, which often reduce enzymes activity it has been investigated by means of enzymatic assays and differential scanning calorimetry. Results showed that at pH 9.1 and 7.3, the Poloxamer in the form of unimeric, micellar and gel state is able to effectively preserve the enzyme from thermoinactivation. In addition by calorimetric data Poloxamer 407 has showed an effect in preserving ADH from aggregation at pH 7.3. In conclusion, Poloxamer 407 seems to be very effective in protecting ADH from stress related events, like alkaline inactivation and aggregation.

Keywords

Poloxamer 407 Self-assembly Alcohol dehydrogenase Thermal stability Enzyme catalysis 

References

  1. 1.
    Dai, C., Wang, B., & Zhao, H. (2005). Microencapsulation peptide and protein drugs delivery system. Colloids and Surfaces. B, Biointerfaces, 41, 117–120.CrossRefGoogle Scholar
  2. 2.
    Cleland, J. L., Daugherty, A., & Mrsny, R. (2001). Emerging protein delivery methods. Current Opinion in Biotechnology, 12, 212–219.CrossRefGoogle Scholar
  3. 3.
    Bromberg, L. E., & Ron, E. S. (1998). Temperature-responsive gels and thermogelling polymer matrices for protein and peptide delivery. Advanced Drug Delivery Reviews, 31, 197–221.CrossRefGoogle Scholar
  4. 4.
    Miyazaki, S., Takeuchi, S., Yokouchi, C., & Takada, M. (1984). Pluronic F-127 gels as a vehicle for topical administration of anticancer agents. Chemical and Pharmaceutical Bulletin, 32, 4205–4208.CrossRefGoogle Scholar
  5. 5.
    Alexandridis, P., & Hatton, T. A. (1995). Poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) block copolymer surfactants in aqueous solutions and at interfaces: thermodynamics, structure, dynamics, and modelling. Colloid Surf A-Physicochem Eng Asp, 96, 1–46.CrossRefGoogle Scholar
  6. 6.
    Wang, P., & Johnston, T. P. (1991). Kinetics of sol-to-gel transition for poloxamer polyols. Journal of Applied Polymer Science, 43, 283–292.CrossRefGoogle Scholar
  7. 7.
    Rassing, J., & Attwood, D. (1983). Ultrasonic velocity and light-scattering studies on the polyoxyethylene-polyoxypropylene copolymer Pluronic F127 in aqueous solution. International Journal of Pharmaceutics, 13, 47–55.CrossRefGoogle Scholar
  8. 8.
    Vadnere, M., Amidon, G., Lindenbaum, S., & Haslam, J. L. (1984). Thermodynamic studies on the gel–sol transition of some pluronic polyols. International Journal of Pharmaceutics, 22, 207–218.CrossRefGoogle Scholar
  9. 9.
    Wanka, G., Hoffmann, H., & Ulbricht, W. (1990). The aggregation behaviour of poly(oxyethylene)-poly(oxypropylene)-poly(oxyethylene) block copolymers in aqueous solution. Colloid & Polymer Science, 268, 101–117.CrossRefGoogle Scholar
  10. 10.
    Pandit, N. K., & Wang, D. (1998). Salt effect on the diffusion and release rate of propanolol from poloxamer 407 gel. International Journal of Pharmaceutics, 167, 183–189.CrossRefGoogle Scholar
  11. 11.
    Johnston, T. P., & Miller, S. C. (1985). Toxicological evaluation of poloxamers for intramuscular use. Journal of Parenteral Science and Technology, 39, 83–88.Google Scholar
  12. 12.
    Fults, K. A., & Johnston, T. P. (1990). Sustained release of urease from a Poloxamer gel matrix. Journal of Parenteral Science and Technology, 44, 58–65.Google Scholar
  13. 13.
    Johnston, T. P., Punjabi, M. A., & Froelich, C. S. (1992). Sustained release of interleukin-2 from a Poloxamer 407 gel matrix following intraperitoneal injection in mice. Pharmaceutical Research, 9, 425–434.CrossRefGoogle Scholar
  14. 14.
    Pec, E. A., Wout, Z. G., & Johnston, T. P. (1992). Biological activity of urease formulated in Poloxamer 407 following intraperitoneal injection in the rat. Journal of Pharmaceutical Sciences, 81, 626–630.CrossRefGoogle Scholar
  15. 15.
    Wang, P., & Johnston, T. P. (1995). Sustained-release interleukin-2 following intramuscular injection in rats. International Journal of Pharmaceutics, 113, 73–81.CrossRefGoogle Scholar
  16. 16.
    Park, T. G., Cohen, S., & Langer, R. (1992). Poly(L-lactic acid)/Pluronic blends. Characterization of phase separation behaviour, degradation and morphology and use as protein-releasing matrices. Macromolecules, 25, 116–122.CrossRefGoogle Scholar
  17. 17.
    Park, S. Y., Chung, H. J., Lee, Y., & Park, T. G. (2008). Injectable and sustained delivery of human growth hormone using chemically modified Pluronic copolymer hydrogels. Biotechnology Journal, 3, 669–675.CrossRefGoogle Scholar
  18. 18.
    Chung, H. J., Lee, Y., & Park, T. G. (2008). Thermo-sensitive and biodegradable hydrogels based on stereocomplexed Pluronic multi-block copolymers for controlled protein delivery. Journal of Controlled Release, 127, 22–30.CrossRefGoogle Scholar
  19. 19.
    Katakam, M., Bell, L. N., & Banga, A. K. (1995). Effect of surfactants on the physical stability of recombinant human growth hormone. Journal of Pharmaceutical Sciences, 84, 713–716.CrossRefGoogle Scholar
  20. 20.
    Katakam, M., Ravis, W. R., & Banga, A. K. (1997). Controlled release of human growth hormone in rats following parenteral administration of poloxamer gel. Journal of Controlled Release, 49, 21–26.CrossRefGoogle Scholar
  21. 21.
    Williams, R. J. P. (1995). Energised (entatic) states of groups and of secondary structures in proteins and metalloproteins. European Journal of Biochemistry, 234, 363–381.CrossRefGoogle Scholar
  22. 22.
    Miroliaei, M., Ranjbar, B., Naderi-Manesh, H., & Nemat-Gorgani, M. (2007). Thermal denaturation of yeast alcohol dehydrogenase and protection of secondary and tertiary structural changes by sugars: CD and fluorescence studies. Enzyme and Microbial Technology, 40, 896–901.CrossRefGoogle Scholar
  23. 23.
    Yang, Y., & Zhou, H. M. (2001). Effect of zinc ions on conformational stability of yeast alcohol dehydrogenase. Biochemistry (Mosc), 66, 47–54.CrossRefGoogle Scholar
  24. 24.
    Arakawa, T., & Timasheff, S. N. (1985). The stabilization of proteins by osmolytes. Biophysical Journal, 47, 411–414.CrossRefGoogle Scholar
  25. 25.
    Timasheff, S. N. (2002). Protein-solvent preferential interactions, protein hydration, and the modulation of biochemical reactions by solvent components. PNAS, 99, 9721–9726.CrossRefGoogle Scholar
  26. 26.
    Auton, M., Bolen, D. W., & Rösgen, J. (2008). Structural thermodynamics of protein preferential solvation: osmolyte solvation of proteins, aminoacids, and peptides. PROTEINS: Structure, Function and Bioinformatics, 73, 802–813.CrossRefGoogle Scholar
  27. 27.
    Foreman, T. M., Khalil, M., Meier, P., Brainard, J. R., Vanderberg, L. A., & Sauer, N. N. (2001). Effects of charged water-soluble polymers on the stability and activity of yeast alcohol dehydrogenase and subtilisin carlsberg. Biotechnology and Bioengineering, 76, 241–246.CrossRefGoogle Scholar
  28. 28.
    Markossian, K. A., Golub, N. V., Khanova, H. A., Levitsky, D. I., Poliansky, N. B., Muranov, K. O., et al. (2008). Mechanism of thermal aggregation of yeast alcohol dehydrogenase I—role of intramolecular chaperone. BBA, 1784, 1286–1293.Google Scholar
  29. 29.
    Vanni, A., Anfossi, L., Pessione, E., & Giovannoli, C. (2002). Catalytic and spectroscopic characterisation of a copper-substituted alcohol dehydrogenase from yeast. International Journal of Biological Macromolecules, 30, 41–45.CrossRefGoogle Scholar
  30. 30.
    Barzegar, A., Moosavi-Movahedi, A. A., Kyani, A., Goliaei, B., Ahmadian, S., & Sheibani, N. (2010). New model for polymerization of oligomeric alcohol dehydrogenases into nanoaggregates. Applied Biochemistry and Biotechnology, 160, 1188–1205.CrossRefGoogle Scholar
  31. 31.
    Sanchez-Ruiz, J. M. (1992). Theoretical analysis of Lumry–Eyring models in differential scanning calorimetry. Biophysical Journal, 61, 921–935.CrossRefGoogle Scholar
  32. 32.
    Bergmeyer, H. U. (1974). Methods of enzymatic analysis (Bergmeyer H.U. Editions) Verlag Chemie, Weinheim and Academic Press, New York.Google Scholar
  33. 33.
    Segel, I. H. (1975). Enzyme kinetics—behavior and analysis of rapid equilibrium and steady-state enzyme systems (pp. 100–160). NY: Wiley.Google Scholar
  34. 34.
    Bonacucina, G., Spina, M., Misici-Falzi, M., Cespi, M., Pucciarelli, S., Angeletti, M., et al. (2007). Effect of hydroxypropyl β-cyclodextrin on the self-assembling and thermogelation properties of Poloxamer 407. European Journal of Pharmaceutical Sciences, 32, 115–122.CrossRefGoogle Scholar
  35. 35.
    Meredith, S. C. (2005). Protein denaturation and aggregation. cellular responses to denatured and aggregated proteins. Annals of the New York Academy of Sciences, 1066, 181–221.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Stefania Pucciarelli
    • 1
    Email author
  • Giulia Bonacucina
    • 2
  • Franco Bernabucci
    • 1
  • Marco Cespi
    • 2
  • Giovanna Mencarelli
    • 2
  • Giusi Serena De Fronzo
    • 1
  • Paolo Natalini
    • 1
  • Giovanni Filippo Palmieri
    • 2
  1. 1.School of Biosciences and BiotechnologyUniversity of CamerinoCamerinoItaly
  2. 2.School of PharmacyUniversity of CamerinoCamerinoItaly

Personalised recommendations