Applied Biochemistry and Biotechnology

, Volume 167, Issue 2, pp 348–357 | Cite as

Role of Vitamins B-3 and C in the Fashioning of Granules in UASB Reactor Sludge

  • Tasneem Abbasi
  • R. Sanjeevi
  • Manoj Makhija
  • S. A. AbbasiEmail author


Whereas a myriad of possible factors have been reported which effect the formation of granules in a upflow anaerobic sludge blanket (UASB) reactor and influence their properties, there is no study on the effect of vitamins on the granulation of UASB reactor sludge. The present study was undertaken to bridge this gap. It was seen that vitamins helped in better granule formation—as reflected by favorable size distribution, sludge volume index, and settling velocity—compared to controls. The vitamin-spiked reactors also achieved >85 % COD removal efficiency in half the number of days the unspiked reactors took. The vitamin supplements were effective at concentrations ≤ 1 mg/l. Hence, their use in expediting granule formation as also in developing better-quality granules appears economically viable.


UASB Sludge granules Vitamin B3 Vitamin C Wastewater 



RS thanks the Council for Scientific and Industrial Research, New Delhi, for Research Associateship, and TA and SAA thank the Ministry of Water Resources, Government of India, for support in the form of an R&D project.


  1. 1.
    Abbasi, T., & Abbasi, S. A. (2010). Production of clean energy by anaerobic digestion of phytomass-New prospects, for a global warming amelioration technology. Renewable and Sustainable Energy Reviews, 14(6), 1653–1659.CrossRefGoogle Scholar
  2. 2.
    Abbasi, T., & Abbasi, S. A. (2012a). Formation and impact of granules during wastewater treatment with upflow anaerobic sludge blanket (UASB) reactor. Renewable and Sustainable Energy Reviews, 16, 1696–1708.CrossRefGoogle Scholar
  3. 3.
    Abbasi, T., & Abbasi, S. A. (2012b). Anaerobic digestion for global warming control and energy generation-An overview. Renewable and Sustainable Energy Reviews, 16(5), 3228–3242.CrossRefGoogle Scholar
  4. 4.
    Gomec, C. Y. (2010). High-rate anaerobic treatment of domestic wastewater at ambient operating temperatures: a review on benefits and drawbacks. Journal of Environmental Science and Health-Part A Toxic/Hazardous Substances and Environmental Engineering, 45(10), 1169–1184.CrossRefGoogle Scholar
  5. 5.
    O’Flaherty, V. (2006). The microbiology and biochemistry of anaerobic bioreactors with relevance to domestic sewage treatment. Reviews in Environmental Science and Bio/Technology, 5(1), 39–55.CrossRefGoogle Scholar
  6. 6.
    Ramasamy, E. V., Gajalakshmi, S., Sanjeevi, R., Jithesh, M. N., & Abbasi, S. A. (2004). Feasibility studies on the treatment of dairy wastewaters with upflow anaerobic sludge blanket reactors. Bioresource Technology, 93(2), 209–212.CrossRefGoogle Scholar
  7. 7.
    Liu, Y., Xu, H. L., Yang, S. F., & Tay, J. H. (2003). Mechanisms and models for anaerobic granulation in Upflow anaerobic sludge blanket reactor. Water Research, 37(3), 661–673.CrossRefGoogle Scholar
  8. 8.
    Tiwari, M. K., Guha, S., Harendranath, C. S., & Tripathi, S. (2006). Influence of extrinsic factors on granulation in UASB reactor. Applied Microbiology and Biotechnology, 71(2), 145–154.CrossRefGoogle Scholar
  9. 9.
    Bujoczek, G., Oleszkiewicz, J. A., Danesh, S., & Sparling, R. R. (2002). Co-processing of organic fraction of municipal solid waste and primary sludge-Stabilization and disinfection. Environmental Technology, 23(2), 227–241.CrossRefGoogle Scholar
  10. 10.
    Zhang, Z., Quan, T., Li, P., Zhang, Y., Sugiura, N., & Maekawa, T. (2004). Study on methane fermentation and production of vitamin B12 from alcohol waste slurry. Applied Biochemistry and Biotechnology-Part A Enzyme Engineering and Biotechnology, 115(40238), 1033–1039.Google Scholar
  11. 11.
    Taconi, K.A. (2004). Methanogenic generation of biogas from synthesis-gas fermentation wastewaters. PhD (Chemical Engineering) thesis, Mississippi State University, USA.Google Scholar
  12. 12.
    Guerrero-Barajas, C., & Field, J. A. (2005). Riboflavin- and cobalamin-mediated biodegradation of chloroform in a methanogenic consortium. Biotechnology and Bioengineering, 89(5), 539–550.CrossRefGoogle Scholar
  13. 13.
    Mendoza, L., Carballa, M., Sitorus, B., Pieters, J., & Verstraete, W. (2009). Technical and economic feasibility of gradual concentric chambers reactor for sewage treatment in developing countries. Electronic Journal of Biotechnology, 12(2), 1–13.CrossRefGoogle Scholar
  14. 14.
    Fermoso, F. G., Bartacek, J., & Lens, P. N. L. (2010). Effect of vitamin B12 pulse addition on the performance of cobalt deprived anaerobic granular sludge bioreactors. Bioresource Technology, 101(14), 5201–5205.CrossRefGoogle Scholar
  15. 15.
    Mohan, S. V., Srikanth, S., Dinakar, P., & Sarma, P. N. (2008). Photo-biological hydrogen production by the adopted mixed culture: data enveloping analysis. International Journal of Hydrogen Energy, 33(2), 559–569.CrossRefGoogle Scholar
  16. 16.
    Srikanth, S., Mohan, S. V., & Sarma, P. N. (2010). Positive anodic poised potential regulates microbial fuel cell performance with the function of open and closed circuitry. Bioresource Technology, 101(14), 5337–5344.CrossRefGoogle Scholar
  17. 17.
    Shi, R., Xu, H., & Zhang, Y. (2011). Enhanced treatment of wastewater from the vitamin C biosynthesis industry using a UASB reactor supplemented with zero-valent iron. Environmental Technology, 32(16), 1859–1865.CrossRefGoogle Scholar
  18. 18.
    Shi, R., Zhang, Y., Yang, W., & Xu, H. (2012). Microbial community characterization of an UASB treating increased organic loading rates of vitamin C biosynthesis wastewater. Water Science and Technology, 65(2), 254–261.CrossRefGoogle Scholar
  19. 19.
    APHA (2005). Standard Methods for the Examination of Water and Waste Water, American Public Health Association, Washington DC.Google Scholar
  20. 20.
    Ramasamy, E. V., & Abbasi, S. A. (2000). High-solids anaerobic digestion for the recovery of energy from municipal solid waste (MSW). Environmental Technology, 21(3), 345–349.CrossRefGoogle Scholar
  21. 21.
    Ramasamy, E. V., & Abbasi, S. A. (2001). Enhancement in the treatment efficiency and conversion to energy of dairy wastewaters by augmenting CST reactors with simple biofilm support systems. Environmental Technology, 22(5), 561–565.CrossRefGoogle Scholar
  22. 22.
    Abbasi, S. A., Nipaney, P. C., & Schaumberg, G. D. (1990). Bioenergy potential of eight common aquatic weeds. Biological Wastes, 34(4), 359–366.CrossRefGoogle Scholar
  23. 23.
    Sankar Ganesh, P., Ramasamy, E. V., Gajalakshmi, S., & Abbasi, S. A. (2005). Extraction of volatile fatty acids (VFAs) from water hyacinth using inexpensive contraptions, and the use of the VFAs as feed supplement in conventional biogas digesters with concomitant final disposal of water hyacinth as vermicompost. Biochemical Engineering Journal, 27(1), 17–23CrossRefGoogle Scholar
  24. 24.
    Sankar Ganesh, P., Sanjeevi, R., Gajalakshmi, S., Ramasamy, E. V., & Abbasi, S. A. (2008). Recovery of methane-rich gas from solidfeed anaerobic digestion of ipomoea (Ipomoea carnea). Bioresource Technology, 99(4), 812–818.CrossRefGoogle Scholar
  25. 25.
    Abbasi, S. A., & Nipaney, P. C. (1986). Infestation by aquatic weeds of the fern genus Salvinia: Its status and control. Environmental Conservation, 13(3), 235–241.CrossRefGoogle Scholar
  26. 26.
    Abbasi, S. A., & Nipaney, P. C. (1994). Potential of aquatic weed Salvinia molesta (Mitchell) for water treatment and energy recovery. Indian Journal of Chemical Technology, 1(4), 204–213.Google Scholar
  27. 27.
    Abbasi, S. A., Nipaney, P. C. & Panholzer, M. B. (1991), Biogas production from the aquatic weed pistia (Pistia stratiotes). Bioresource Technology, 37(3), 211–214.CrossRefGoogle Scholar
  28. 28.
    Li, X-M., Liu, Q-Q., Yang, Q., Guo, L., Zeng, G-M., Hu, J-M., & Zheng, W. (2009). Enhanced aerobic sludge granulation in sequencing batch reactor by Mg2+ augmentation. Bioresource Technology, 100, 64–67.CrossRefGoogle Scholar
  29. 29.
    Sponza D. T. (2003). Enhancement of granule formation and sludge retainment for tetrachloroethylene (TCE) removal in an upflow anaerobic sludge blanket (UASB) reactor. Advances in Environmental Research, 7, 453–462.CrossRefGoogle Scholar
  30. 30.
    Laguna, A., Ouattara, A., Gonzalez, R. O., Baron, O., Fama, G., El Mamouni, R., Guiot, S., Monroy, O., & Macarie, H. (1999). A simple and low cost technique for determining the granulometry of upflow anaerobic sludge blanket reactor sludge. Water Science and Technology, 40(8), 1–8.CrossRefGoogle Scholar
  31. 31.
    Ghangrekar, M. M., Asolekar, S. R., & Joshi, S. G. (2005). Characteristics of sludge developed under different loading conditions during UASB reactor start-up and granulation. Water Research, 39(6), 1123–1133.CrossRefGoogle Scholar
  32. 32.
    Ryan, T. (2007). Modern experimental design (p. 655). New Jersey: Wiley-Blackwell.CrossRefGoogle Scholar
  33. 33.
    Schmidt, J. E., & Ahring, B. K. (1996). Granular sludge formation in upflow anaerobic sludge blanket (UASB) reactors. Biotechnology and Bioengineering, 49(3), 229–246.CrossRefGoogle Scholar
  34. 34.
    Yan, Y.-G., & Tay, J.-H. (1997). Characterisation of the granulation process during UASB start-up. Water Research, 31(7), 1573–1580.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Tasneem Abbasi
    • 1
  • R. Sanjeevi
    • 1
  • Manoj Makhija
    • 1
  • S. A. Abbasi
    • 1
    Email author
  1. 1.Center for Pollution Control and Environmental EngineeringPondicherry UniversityPuducherryIndia

Personalised recommendations