Applied Biochemistry and Biotechnology

, Volume 167, Issue 2, pp 237–249 | Cite as

Exploring the Cause of Oseltamivir Resistance Against Mutant H274Y Neuraminidase by Molecular Simulation Approach

  • V. Karthick
  • V. Shanthi
  • R. Rajasekaran
  • K. RamanathanEmail author


Oseltamivir (Tamiflu) is the preferred anti-viral drug employed to fight the flu virus in infected individuals. The principal target for this drug is a virus surface glycoprotein, neuraminidase (NA), which facilitates the release of nascent virus and thus spreads infections. Until recently, only a low prevalence of neuraminidase inhibitors (NAIs) resistance (<1 %) had been detected in circulating viruses. However, there have been reports of significant numbers of A (H1N1) influenza strains with a H274Y neuraminidase mutation that was highly resistant to the NAI, oseltamivir. In this study, we highlight the effect of point mutation-induced oseltamivir resistance in H1N1 subtype neuraminidases by molecular docking and molecular dynamics simulation approach. Our results suggested that wild-type NA could be more indispensable for the oseltamivir binding, as characterized by minimum number of H-bonds, high flexibility and largest binding affinity than mutant-type NA. This study throws light on the possible effects of drug-resistant mutations on the large functionally important collective motions in biological systems.


Neuraminidase Oseltamivir resistance Molecular docking Normal mode analysis Molecular dynamic simulation 



The authors express deep sense of gratitude to the management of Vellore Institute of Technology for all the support, assistance, and constant encouragements to carry out this work. The authors also thank Professor M.A. Mohamed Sahul Hameed, English division, for English editing and grammar corrections in our manuscript.


  1. 1.
    Mukhtar, M. M., Rasool, S. T., Song, D., Zhu, C., Hao, Q., Zhu, Y., & Wu, J. (2007). Journal of General Virology, 88, 3094–3099.CrossRefGoogle Scholar
  2. 2.
    Shirvan, A. N., Moradi, M., Aminian, M., & Madani, R. J. (2007). Vetenary and Animal Science, 31, 219–223.Google Scholar
  3. 3.
    Takeda, M., Leser, G. P., Russell, C. J., & Lamb, R. A. (2003). Proceedings of the National Academy of Sciences, 100, 14610–14617.CrossRefGoogle Scholar
  4. 4.
    McKimm-Breschkin, J. L. (2000). Antiviral Research, 47, 1–17.CrossRefGoogle Scholar
  5. 5.
    Du, Q. S., Wang, S. Q., & Chou, K. C. (2007). Biophysica Research Communication, 354, 634–640.CrossRefGoogle Scholar
  6. 6.
    Von Itzstein, M., Wu, W. Y., Kok, G. B., Pegg, M. S., Dyason, J. C., Jin, B., Van Phan, T., Smythe, M. L., White, H. F., & Oliver, S. W. (1993). Nature, 363, 418–423.CrossRefGoogle Scholar
  7. 7.
    Kim, C. U., Lew, W., Williams, M. A., Liu, H., Zhang, L., Swaminathan, S., Bischofberger, N., Chen, M. S., Mendel, D. B., & Tai, C. Y. (1997). Journal of the American Chemical Society, 119, 681–690.CrossRefGoogle Scholar
  8. 8.
    Gubareva, L. V., Kaiser, L., & Hayden, F. G. (2000). Lancet, 355, 827–835.CrossRefGoogle Scholar
  9. 9.
    Bucher, D. J., & Kilbourne, E. D. (1972). Journal of Virology, 10, 60–66.Google Scholar
  10. 10.
    Baum, S. G. (2009). Clinical Infectious Diseases, 49, 1836–1837.CrossRefGoogle Scholar
  11. 11.
    Centers for Disease Control & Prevention (CDC). (2008). MMWR Morb Mortal Wkly Rep, 57, 1329–1332.Google Scholar
  12. 12.
    Gubareva, L. V. (2004). Virus Research, 103, 199–203.CrossRefGoogle Scholar
  13. 13.
    Lander, G. C., Evilevitch, A., Jeembaeva, M., Potter, C. S., Carragher, B., & Johnson, J. E. (2008). Structure, 16, 1399–1406.CrossRefGoogle Scholar
  14. 14.
    Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., Shindyalov, I. N., & Bourne, P. E. (2000). Nucleic Acids Research, 28, 235–242.CrossRefGoogle Scholar
  15. 15.
    Russell, R. J., Haire, L. F., Stevens, D. J., Collins, P. J., Lin, Y. P., Blackburn, G. M., Hay, A. J., Gamblin, S. J., & Skehel, J. J. (2006). Nature, 443, 45–49.CrossRefGoogle Scholar
  16. 16.
    Collins, P. J., Haire, L. F., Lin, Y. P., Liu, J., Russell, R. J., Walker, P. A., Skehel, J. J., Martin, S. R., Hay, A. J., & Gamblin, S. J. (2008). Nature, 453, 1258–1261.CrossRefGoogle Scholar
  17. 17.
    Feldman, J., Snyder, K. A., Ticoll, A., Pintilie, G., & Hogue, C. W. (2006). FEBS Letters, 580, 1649–1653.CrossRefGoogle Scholar
  18. 18.
    Gasteiger, J., Rudolph, C., & Sadowski, J. (1990). Tetrahedron. Compututer, Method, 3, 537–547.Google Scholar
  19. 19.
    Lopez, G., Valencia, A., & Tress, M. L. (2007). Nucleic Acids Research, 35, 573–577.CrossRefGoogle Scholar
  20. 20.
    Yuan, Z., Bailey, T. L., & Teasdale, R. D. (2005). Proteins, 58, 905–912.CrossRefGoogle Scholar
  21. 21.
    Ringe, D., & Petsko, G. A. (1986). Methods in Enzymology, 131, 389–433.CrossRefGoogle Scholar
  22. 22.
    Parthasarathy, S., & Murthy, M. (2000). r. Protein Engineering, 13, 9–13.CrossRefGoogle Scholar
  23. 23.
    Carlson, H. A., & McCammon, J. A. (2000). Molecular Pharmacology, 57, 213–218.Google Scholar
  24. 24.
    Hinkle, A., & Tobacman, L. S. (2003). Journal of Biological Chemistry, 278, 506–513.CrossRefGoogle Scholar
  25. 25.
    Rajasekaran, R., George Priya Doss, C., Sudandiradoss, C., Ramanathan, K., Purohit, R., & Sethumadhavan, R. (2008). Comptes Rendus Biologies, 331, 409–417.CrossRefGoogle Scholar
  26. 26.
    Suhre, K., & Sanejouand, Y. H. (2004). Nucleic Acids Research, 32, 610–614.CrossRefGoogle Scholar
  27. 27.
    Thompson M. A. (2004). ArgusLab 4.0.1. Planaria Software, LLC, Seattle, WA,
  28. 28.
    Thompson, M. A. (2004). Poster presentation: molecular docking using arguslab: an efficient shape-based search algorithm & the AScore scoring function. Philadelphia: Fall ACS meeting.Google Scholar
  29. 29.
    Hess, B., Kutzner, C., Spoel, D., & Lindahl, E. (2008). J Chem Theory Comput, 4, 435–447.CrossRefGoogle Scholar
  30. 30.
    Spoel, D., Lindahl, E., Hess, B., Groenhof, G., Mark, A. E., & Berendsen, H. J. (2005). J Chem Theory Comput, 26, 1701–1718.Google Scholar
  31. 31.
    Meagher, K. L., & Carlson, H. A. (2005). Proteins: Structural Functions Bioinformatics, 58, 119–125.CrossRefGoogle Scholar
  32. 32.
    Darden, T., Perera, L., Li, L., & Pedersen, L. (1999). Structure, 7, 55–60.CrossRefGoogle Scholar
  33. 33.
    Van Gunsteren, W. F., & Berendsen, H. J. (1977). Molecular Physics, 34, 1311–1327.CrossRefGoogle Scholar
  34. 34.
    Wallace, A. C., Laskowski, R. A., & Thornton, J. M. (1995). Protein Engineering, 8, 127–134.CrossRefGoogle Scholar
  35. 35.
    Colman, P. M., Varghese, J. N., & Laver, W. G. (1983). Nature, 303, 41–44.CrossRefGoogle Scholar
  36. 36.
    Rungrotmongkol, T., Udommaneethanakit, T., Malaisree, M., Nunthaboot, N., Intharathep, P., Sompornpisut, P., & Hannongbua, S. (2009). Biophysical Chemistry, 145, 29–36.CrossRefGoogle Scholar
  37. 37.
    Cavasotto, C. N., Kovacs, J. A., & Abagyan, R. A. (2005). Journal of the American Chemical Society, 26, 9632–9640.CrossRefGoogle Scholar
  38. 38.
    Teague, S. J. (2003). Nature Reviews. Drug Discovery, 2, 527–541.CrossRefGoogle Scholar
  39. 39.
    Durrant, J. D., & McCammon, J. A. (2011). BMC Biology, 9, 71–79.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • V. Karthick
    • 1
  • V. Shanthi
    • 2
  • R. Rajasekaran
    • 1
  • K. Ramanathan
    • 1
    Email author
  1. 1.Bioinformatics Division, School of Bio Sciences and TechnologyVellore Institute of TechnologyVelloreIndia
  2. 2.Industrial Biotechnology Division, School of Bio Sciences and TechnologyVellore Institute of TechnologyVelloreIndia

Personalised recommendations