Skip to main content
Log in

Development and Characterization of a Solid-Phase Biocatalyst Based on Cyclodextrin Glucantransferase Reversibly Immobilized onto Thiolsulfinate-Agarose

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Reduction of disulfide bonds and introduction of “de novo” thiol groups in cyclodextrin glucantransferase from Thermoanaerobacter sp. were assessed in order to perform reversible covalent immobilization onto thiol-reactive supports (thiolsulfinate-agarose). Only the thiolation process dramatically improved the immobilization yield, from 0 % for the native and reduced enzyme, up to nearly 90 % for the thiolated enzyme. The mild conditions of the immobilization process (pH 6.8–7.0 and 22 °C) allowed the achievement of 100 % coupling efficiencies when low loads were applied. Ionic strength was a critical parameter for the immobilization process; for high activity recoveries, 50 mM phosphate buffer supplemented with 0.15 M NaCl was required. The kinetic parameters, pH and thermal stabilities for the immobilized biocatalyst were similar to those for the native enzyme. For β-cyclization activity, optimal pH range and temperature were 4.0–5.4 and 85 °C. The possibility of reusing the support was demonstrated by the reversibility of enzyme–support binding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Van der Vee, B. A., Van Alebeek, G. J. W. M., Uitdehaag, J. C. M., Dijkstra, B. W., & Dijkhuizen, L. (2000). European Journal of Biochemistry, 267, 658–665.

    Article  Google Scholar 

  2. French, D., & Rundle, R. E. (1942). Journal of the American Chemical Society, 64, 1651–1655.

    Article  CAS  Google Scholar 

  3. Hedges, A. R. (1998). Chemical Reviews, 98, 2035–2044.

    Article  CAS  Google Scholar 

  4. Astray, G., Mejuto, J. C., Rial-Otero, R., Gonzalez-Barreiro, C., & Simal-Gándara, J. (2009). Food Hydrocolloids, 23(7), 1631–1640.

    Article  CAS  Google Scholar 

  5. Tardioli, P. W., Zanin, G. M., & Moraes, F. F. (2000). Applied Biochemistry and Biotechnology, 84–86, 1003–1019.

    Article  Google Scholar 

  6. Martin, M. T., Plou, F. J., Alcalde, M., & Ballesteros, A. (2003). Journal of Molecular Catalysis B: Enzymatic, 21, 299–308.

    Article  CAS  Google Scholar 

  7. Leemhuis, H., Kelly, M. M., & Dijkhuizen, L. (2010). Applied Microbiology and Biotechnology, 85(4), 823–835.

    Article  CAS  Google Scholar 

  8. Amud, A. E., Presa Da Silva, G. R., Tardioli, P. W., Soares, C. M. F., Moraes, F. F., & Zanin, G. M. (2008). Applied Biochemistry and Biotechnology, 146, 189–201.

    Article  CAS  Google Scholar 

  9. Costa, H., Del Canto, S., Ferrarotti, S., & Biscoglio, M. (2009). Carbohydrate Research, 344, 74–79.

    Article  CAS  Google Scholar 

  10. Ovsejevi, K., Brena, B., Batista-Viera, F., & Carlsson, J. (1995). Enzyme and Microbial Technology, 17, 151–156.

    Article  CAS  Google Scholar 

  11. Brena, B., Ovsejevi, K., Luna, B., & Batista-Viera, F. (1993). Journal of Molecular Catalysis, 84, 381–390.

    Article  CAS  Google Scholar 

  12. Ovsejevi, K., Grazú, V., & Batista-Viera, F. (1998). Biotechnology Techniques, 12, 143–148.

    Article  CAS  Google Scholar 

  13. Batista-Viera, F., Ovsejevi, K., & Manta, C. (2006). In J. M. Guisán (Ed.), Methods in biotechnology. Immobilization of enzymes and cells (2nd ed., Vol. 22, pp. 185–204). Totowa: Humana.

    Chapter  Google Scholar 

  14. Batista-Viera, F., Barbieri, M., Ovsejevi, K., Manta, C., & Carlsson, J. (1991). Applied Biochemistry and Biotechnology, 31, 175–195.

    Article  CAS  Google Scholar 

  15. Smith, P. K., Khron, R. I., Hermanson, G. T., Mallia, A. K., Gartner, F. H., Provenzano, M. D., Fujimoto, E. K., Goeke, N. M., Olson, B. J., & Klenk, D. C. (1985). Analytical Biochemistry, 150, 76–85.

    Article  CAS  Google Scholar 

  16. Vikmon, M. (1982). In J. Szejtli (Ed.), First symposium on cyclodextrins (pp. 69–74). Budapest: Reidel Publishing.

    Google Scholar 

  17. Ellman, G. L. (1958). Archives of Biochemistry and Biophysics, 74, 443–450.

    Article  CAS  Google Scholar 

  18. Pedersen, S., Dijkhuizen, L., Dijkstra, B. W., Jensen, B. F., Jogersen, S. T. (1995). Chemtech, 25, 19–25.

  19. Kobayashi, S. (1996). In K. H. Park, F. G. Robyt, & D. Choi (Eds.), Enzymes for carbohydrate engineering (pp. 23–41). Amsterdam: Elsevier.

    Chapter  Google Scholar 

  20. Alcalde, M., Plou, F. J., Andersen, C., Martin, M. T., Pedersen, S., & Ballesteros, A. (1999). FEBS Letters, 445, 333–337.

    Article  CAS  Google Scholar 

  21. Batista-Viera, F., Manta, C., & Carlsson, J. (1996). Biotechnology and Applied Biochemistry, 24, 231–239.

    CAS  Google Scholar 

  22. Mimi Sakinah, A. M., Ismail, A. F., Illias, R. M., Zularisam, A. W., Hassan, O., & Matsura, T. (2008). Separation and Purification Technology, 63, 163–171.

    Article  Google Scholar 

  23. Matioli, G., Zanin, G. M., & De Moraes, F. (2002). Applied Biochemistry and Biotechnology, 98–100, 947–961.

    Article  Google Scholar 

  24. Rha, Ch. S., Lee, D. H., Kim, S. G., Min, W. K., Byun, S. G., Kweon, D. H., Han, N. S., & Seo, J. H. (2005). Journal of Molecular Catalysis B: Enzymatic, 34, 39–43.

    Article  CAS  Google Scholar 

  25. Biwer, A., Antranikian, G., & Heinzle, E. (2002). Applied Microbiology and Biotechnology, 59, 609–617.

    Article  CAS  Google Scholar 

  26. Batista-Viera, F., Manta, C., & Carlsson, J. (1994). Applied Biochemistry and Biotechnology, 44, 1–14.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful for financial support by the Programa para el Desarrollo de las Ciencias Básicas (PEDECIBA), Uruguay. We also thank NOVOZYMES and its local representative FRADEC for providing free samples of Toruzyme® 3.0 L and Dr. Valerie Dee for linguistic revision.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karen Ovsejevi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Viera, S.E., Batista-Viera, F. & Ovsejevi, K. Development and Characterization of a Solid-Phase Biocatalyst Based on Cyclodextrin Glucantransferase Reversibly Immobilized onto Thiolsulfinate-Agarose. Appl Biochem Biotechnol 167, 164–176 (2012). https://doi.org/10.1007/s12010-012-9686-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-012-9686-8

Keywords

Navigation