Skip to main content
Log in

Reactive Extraction of Citric Acid Using Tri-n-octylamine in Nontoxic Natural Diluents: Part 1—Equilibrium Studies from Aqueous Solutions

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Use of cheap, nontoxic, and selective solvents could economically provide a solution to the recovery of carboxylic acids produced by the bioroute. In this regard in the present paper, reactive extraction of citric acid was studied. Problems encompassing the recovery of the acid ([H3A] oaq  = 0.1–0.8) was solved by using tertiary amine (tri-n-octylamine, TOA) in natural diluents (rice bran oil, sunflower oil, soybean oil, and sesame oil). TOA was very effective in removal of acid providing distribution coefficient (D) as high as 18.51 (E% = 95 %), 12.82 (E% = 93 %), 15.09 (E% = 94 %), and 16.28 (E% = 94 %) when used with rice bran oil, sunflower oil, soybean oil, and sesame oil, respectively. Overall extraction constants and association numbers for TOA + rice bran oil, TOA + sunflower oil, TOA + soybean oil, and TOA + sesame oil were evaluated to be 35.48 (mol/l)−1.46, 29.79 (mol/l)−1.30, 33.79 (mol/l)−1.51, and 37.64 (mol/l)−1.65 and 1.46, 1.30, 1.51, and 1.65, respectively. Specific equilibrium complexation constants (K E(n/m)) were also predicted using mathematical modeling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Abbreviations

TOA:

Tri-n-octylamine

[B]:

Concentration of extractant (amine), moles per liter

[H3A]:

Concentration of undissociated citric acid, moles per liter

D :

Distribution coefficient

E%:

Degree of extraction

[A3−]:

Concentration of citric acid anion, moles per liter

H2A :

Concentration of dissociated citric acid obtained after first dissociation, moles per liter

HA−2 :

Concentration of dissociated citric acid obtained after second dissociation, moles per liter

[H+]:

Concentration of hydroxyl ion, kilomoles per cubic meter

K ai :

Dissociation constant (i = 1 to 3 depending upon the stage of dissociation)

n :

Number of acid molecules involved in the association reaction

m :

Number of extractant molecules involved in the association reaction

α and β :

Limits of number of acid and extractant molecules considered for mass action law modeling

z :

Overall loading ratio

aq:

Aqueous phase

org:

Organic phase

o:

Initial

References

  1. Honda, H., Taya, M., & Kobayashi, T. (1986). Journal of Chemical Engineering Japan, 19, 268–273.

    Article  CAS  Google Scholar 

  2. Laane, C., Boeren, S., & Vos, K. (1985). Trends in Biotechnology, 3, 251–252.

    Article  CAS  Google Scholar 

  3. Andersson, M. (1998). Biocatalysis and Biotransfusion, 16, 259–273.

    Article  CAS  Google Scholar 

  4. Roffler, S. R., Randolph, T. W., Miller, D. A., Blanch, H. W., & Prausnitz, J. M. (1991). Extractive bioconversions with non-aqueous solvents. In B. Mattiasson & O. Holst (Eds.), Extractive bioconversions. New York: Marcel Dekker.

    Google Scholar 

  5. Pogorevc, M., Stecher, H., & Faber, K. (2002). Biotechnology Letters, 24, 857–860.

    Article  CAS  Google Scholar 

  6. Lewis, V. P., & Yang, S. T. (1992). Biotechnology, 8, 104–110.

    CAS  Google Scholar 

  7. Yabannavar, V. M., & Wang, D. I. C. (1991). Biotechnology and Bioengineering, 37, 716–722.

    Article  CAS  Google Scholar 

  8. Solichien, M. S., OBrien, D., Hammond, E. G., & Glaz, C. E. (1995). Enzyme and Microbial Technology, 17, 23–31.

    Article  CAS  Google Scholar 

  9. Prasad, R., & Sirkar, K. K. (1988). AICHE Journal, 34, 177–188.

    Article  CAS  Google Scholar 

  10. Nuchnio, P., Izawa, I., Nishio, N., & Nagai, S. (1987). Journal of Fermentation Technology, 65, 2821–2828.

    Google Scholar 

  11. Christen, P., Minier, M., & Renon, H. (1990). Biotechnology and Bioengineering, 36, 116–123.

    Article  CAS  Google Scholar 

  12. Martak, J., Rosenbergl, M., Schlosser, S., & Kristofikovi, C. (1995). Biotechnology Techniques, 9, 247–252.

    Article  CAS  Google Scholar 

  13. Playne, M. J., & Smith, B. R. (1983). Biotechnology and Bioengineering, 25, 1251–1265.

    Article  CAS  Google Scholar 

  14. Wennersten, R. (1980). Proceedings of the International Solar Extractive Conference, 2, 80–87.

    Google Scholar 

  15. Wennersten, R. (1983). Journal of Chemical Technology and Biotechnology, 33(B), 85–94.

    Google Scholar 

  16. Yi, M., Pen, Q., Chen, D., Pen, L., Zhang, M., Wen, R., et al. (1987). Beijing Daxue Xuebao Ziran Kexuebn, 4, 30–37.

    Google Scholar 

  17. Sergieuskii, V. V. (1989). Izvestiia Vysshei Vchebn. Zaved. Khimii. Tekhnol., 32, 79–81.

    Google Scholar 

  18. Sirman, T., Pyle, D. L., & Grandison, A. S. (1990). In D. L. Pyle (Ed.), Separation for biotechnology 2 [Pap. Int. Symp.] (pp. 245–296). Amsterdam: Elsevier.

    Chapter  Google Scholar 

  19. Bauer, U., Marr, R., Rueckl, W., & Siebenhofeer, M. (1988). Chemical and Biochemical Engineering, 2, 230–232.

    CAS  Google Scholar 

  20. Bauer, U., Marr, R., Rueckl, W., & Siebenhofeer, M. (1989). Berichte der Bunsengesellschaft für Physikalische Chemie, 93, 980–984.

    Article  CAS  Google Scholar 

  21. Baniel, A. M., Blumberg, R., Hajdu, K. (1982) U.S. patent 4,275,234.

  22. Juang, R. S., & Huang, T. H. (1995). Journal of Chemical Engineering Japan, 28, 274–281.

    Article  CAS  Google Scholar 

  23. Bizek, V., Horacek, J., Kousova, M., Heyberger, A., & Prochazka, J. (1992). Chemical Engineering Science, 47, 1433–1440.

    Article  CAS  Google Scholar 

  24. Bizek, V., Horacek, J., & Kousova, M. (1993). Chemical Engineering Science, 48, 1447–1457.

    Article  CAS  Google Scholar 

  25. Harington, T., & Hossain, M. M. (2008). Desalination, 218, 287–296.

    Article  CAS  Google Scholar 

  26. Keshav, A., Wasewar, K. L., & Chand, S. (2009). Journal of Chemical Technology and Biotechnology, 84(4), 484–489.

    Article  CAS  Google Scholar 

  27. Wasewar, K. L., Shende, D., & Keshav, A. (2011). Journal of Chemical Technology and Biotechnology, 86(2), 319–323.

    Article  CAS  Google Scholar 

  28. Keshav, A., Wasewar, K. L., & Chand, S. (2009). AICHE Journal, 55(7), 1705–1711.

    Article  CAS  Google Scholar 

  29. Keshav, A., Wasewar, K. L., & Chand, S. (2010). Chemical Engineering Communications, 197, 606–626.

    Article  CAS  Google Scholar 

  30. Malmary, G., Albet, J., Putranto, A., Hanine, H., & Molinier, J. (1998). Journal of Chemical and Engineering Data, 43(5), 849–851.

    Article  CAS  Google Scholar 

  31. Kertes, A. S., & King, C. J. (1986). Biotechnology and Bioengineering, 28, 269–293.

    Article  CAS  Google Scholar 

  32. Keshav, A., Wasewar, K. L., Shri Chand, S., Uslu, H., & Inci, I. (2009). i-manager’s Journal of Future Engineering and Technology, 4(2), 41–49.

    CAS  Google Scholar 

  33. Tamada, J. A., & King, C. J. (1990). Industrial and Engineering Chemistry Research, 29, 1333–1338.

    Article  CAS  Google Scholar 

  34. Canari, R., & Eyal, A. M. (2004). Industrial and Engineering Chemistry Research, 43, 7608–7617.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amit Keshav.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Keshav, A., Norge, P. & Wasewar, K.L. Reactive Extraction of Citric Acid Using Tri-n-octylamine in Nontoxic Natural Diluents: Part 1—Equilibrium Studies from Aqueous Solutions. Appl Biochem Biotechnol 167, 197–213 (2012). https://doi.org/10.1007/s12010-012-9682-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-012-9682-z

Keywords

Navigation