Advertisement

Applied Biochemistry and Biotechnology

, Volume 167, Issue 2, pp 197–213 | Cite as

Reactive Extraction of Citric Acid Using Tri-n-octylamine in Nontoxic Natural Diluents: Part 1—Equilibrium Studies from Aqueous Solutions

  • Amit KeshavEmail author
  • Prakriti Norge
  • Kailas L. Wasewar
Article

Abstract

Use of cheap, nontoxic, and selective solvents could economically provide a solution to the recovery of carboxylic acids produced by the bioroute. In this regard in the present paper, reactive extraction of citric acid was studied. Problems encompassing the recovery of the acid ([H3A] aq o  = 0.1–0.8) was solved by using tertiary amine (tri-n-octylamine, TOA) in natural diluents (rice bran oil, sunflower oil, soybean oil, and sesame oil). TOA was very effective in removal of acid providing distribution coefficient (D) as high as 18.51 (E% = 95 %), 12.82 (E% = 93 %), 15.09 (E% = 94 %), and 16.28 (E% = 94 %) when used with rice bran oil, sunflower oil, soybean oil, and sesame oil, respectively. Overall extraction constants and association numbers for TOA + rice bran oil, TOA + sunflower oil, TOA + soybean oil, and TOA + sesame oil were evaluated to be 35.48 (mol/l)−1.46, 29.79 (mol/l)−1.30, 33.79 (mol/l)−1.51, and 37.64 (mol/l)−1.65 and 1.46, 1.30, 1.51, and 1.65, respectively. Specific equilibrium complexation constants (K E(n/m)) were also predicted using mathematical modeling.

Keywords

Reactive extraction Citric acid Tri-n-octylamine Natural diluents Toxicity 

Nomenclature

TOA

Tri-n-octylamine

[B]

Concentration of extractant (amine), moles per liter

[H3A]

Concentration of undissociated citric acid, moles per liter

D

Distribution coefficient

E%

Degree of extraction

[A3−]

Concentration of citric acid anion, moles per liter

H2A

Concentration of dissociated citric acid obtained after first dissociation, moles per liter

HA−2

Concentration of dissociated citric acid obtained after second dissociation, moles per liter

[H+]

Concentration of hydroxyl ion, kilomoles per cubic meter

Kai

Dissociation constant (i = 1 to 3 depending upon the stage of dissociation)

n

Number of acid molecules involved in the association reaction

m

Number of extractant molecules involved in the association reaction

α and β

Limits of number of acid and extractant molecules considered for mass action law modeling

z

Overall loading ratio

Subscripts

aq

Aqueous phase

org

Organic phase

Superscript

o

Initial

References

  1. 1.
    Honda, H., Taya, M., & Kobayashi, T. (1986). Journal of Chemical Engineering Japan, 19, 268–273.CrossRefGoogle Scholar
  2. 2.
    Laane, C., Boeren, S., & Vos, K. (1985). Trends in Biotechnology, 3, 251–252.CrossRefGoogle Scholar
  3. 3.
    Andersson, M. (1998). Biocatalysis and Biotransfusion, 16, 259–273.CrossRefGoogle Scholar
  4. 4.
    Roffler, S. R., Randolph, T. W., Miller, D. A., Blanch, H. W., & Prausnitz, J. M. (1991). Extractive bioconversions with non-aqueous solvents. In B. Mattiasson & O. Holst (Eds.), Extractive bioconversions. New York: Marcel Dekker.Google Scholar
  5. 5.
    Pogorevc, M., Stecher, H., & Faber, K. (2002). Biotechnology Letters, 24, 857–860.CrossRefGoogle Scholar
  6. 6.
    Lewis, V. P., & Yang, S. T. (1992). Biotechnology, 8, 104–110.Google Scholar
  7. 7.
    Yabannavar, V. M., & Wang, D. I. C. (1991). Biotechnology and Bioengineering, 37, 716–722.CrossRefGoogle Scholar
  8. 8.
    Solichien, M. S., OBrien, D., Hammond, E. G., & Glaz, C. E. (1995). Enzyme and Microbial Technology, 17, 23–31.CrossRefGoogle Scholar
  9. 9.
    Prasad, R., & Sirkar, K. K. (1988). AICHE Journal, 34, 177–188.CrossRefGoogle Scholar
  10. 10.
    Nuchnio, P., Izawa, I., Nishio, N., & Nagai, S. (1987). Journal of Fermentation Technology, 65, 2821–2828.Google Scholar
  11. 11.
    Christen, P., Minier, M., & Renon, H. (1990). Biotechnology and Bioengineering, 36, 116–123.CrossRefGoogle Scholar
  12. 12.
    Martak, J., Rosenbergl, M., Schlosser, S., & Kristofikovi, C. (1995). Biotechnology Techniques, 9, 247–252.CrossRefGoogle Scholar
  13. 13.
    Playne, M. J., & Smith, B. R. (1983). Biotechnology and Bioengineering, 25, 1251–1265.CrossRefGoogle Scholar
  14. 14.
    Wennersten, R. (1980). Proceedings of the International Solar Extractive Conference, 2, 80–87.Google Scholar
  15. 15.
    Wennersten, R. (1983). Journal of Chemical Technology and Biotechnology, 33(B), 85–94.Google Scholar
  16. 16.
    Yi, M., Pen, Q., Chen, D., Pen, L., Zhang, M., Wen, R., et al. (1987). Beijing Daxue Xuebao Ziran Kexuebn, 4, 30–37.Google Scholar
  17. 17.
    Sergieuskii, V. V. (1989). Izvestiia Vysshei Vchebn. Zaved. Khimii. Tekhnol., 32, 79–81.Google Scholar
  18. 18.
    Sirman, T., Pyle, D. L., & Grandison, A. S. (1990). In D. L. Pyle (Ed.), Separation for biotechnology 2 [Pap. Int. Symp.] (pp. 245–296). Amsterdam: Elsevier.CrossRefGoogle Scholar
  19. 19.
    Bauer, U., Marr, R., Rueckl, W., & Siebenhofeer, M. (1988). Chemical and Biochemical Engineering, 2, 230–232.Google Scholar
  20. 20.
    Bauer, U., Marr, R., Rueckl, W., & Siebenhofeer, M. (1989). Berichte der Bunsengesellschaft für Physikalische Chemie, 93, 980–984.CrossRefGoogle Scholar
  21. 21.
    Baniel, A. M., Blumberg, R., Hajdu, K. (1982) U.S. patent 4,275,234.Google Scholar
  22. 22.
    Juang, R. S., & Huang, T. H. (1995). Journal of Chemical Engineering Japan, 28, 274–281.CrossRefGoogle Scholar
  23. 23.
    Bizek, V., Horacek, J., Kousova, M., Heyberger, A., & Prochazka, J. (1992). Chemical Engineering Science, 47, 1433–1440.CrossRefGoogle Scholar
  24. 24.
    Bizek, V., Horacek, J., & Kousova, M. (1993). Chemical Engineering Science, 48, 1447–1457.CrossRefGoogle Scholar
  25. 25.
    Harington, T., & Hossain, M. M. (2008). Desalination, 218, 287–296.CrossRefGoogle Scholar
  26. 26.
    Keshav, A., Wasewar, K. L., & Chand, S. (2009). Journal of Chemical Technology and Biotechnology, 84(4), 484–489.CrossRefGoogle Scholar
  27. 27.
    Wasewar, K. L., Shende, D., & Keshav, A. (2011). Journal of Chemical Technology and Biotechnology, 86(2), 319–323.CrossRefGoogle Scholar
  28. 28.
    Keshav, A., Wasewar, K. L., & Chand, S. (2009). AICHE Journal, 55(7), 1705–1711.CrossRefGoogle Scholar
  29. 29.
    Keshav, A., Wasewar, K. L., & Chand, S. (2010). Chemical Engineering Communications, 197, 606–626.CrossRefGoogle Scholar
  30. 30.
    Malmary, G., Albet, J., Putranto, A., Hanine, H., & Molinier, J. (1998). Journal of Chemical and Engineering Data, 43(5), 849–851.CrossRefGoogle Scholar
  31. 31.
    Kertes, A. S., & King, C. J. (1986). Biotechnology and Bioengineering, 28, 269–293.CrossRefGoogle Scholar
  32. 32.
    Keshav, A., Wasewar, K. L., Shri Chand, S., Uslu, H., & Inci, I. (2009). i-manager’s Journal of Future Engineering and Technology, 4(2), 41–49.Google Scholar
  33. 33.
    Tamada, J. A., & King, C. J. (1990). Industrial and Engineering Chemistry Research, 29, 1333–1338.CrossRefGoogle Scholar
  34. 34.
    Canari, R., & Eyal, A. M. (2004). Industrial and Engineering Chemistry Research, 43, 7608–7617.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Amit Keshav
    • 1
    Email author
  • Prakriti Norge
    • 1
  • Kailas L. Wasewar
    • 2
  1. 1.Department of Chemical EngineeringNational Institute of Technology (NIT) RaipurRaipurIndia
  2. 2.Department of Chemical EngineeringVisvesvaraya National Institute of Technology (VNIT) NagpurNagpurIndia

Personalised recommendations