Skip to main content
Log in

Designer Xylanosomes: Protein Nanostructures for Enhanced Xylan Hydrolysis

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

This work reports the successful design, construction, and application of multi-functional, self-assembling protein complex, termed xylanosomes. Using the architecture of cellulosomes as template, these structures were designed specifically for hemicellulose hydrolysis. Four different xylanosomes were developed, with up to three different hemicellulase activities combined into a single structure. Each xylanosome was composed of two native or chimeric hemicellulases and tested on wheat arabinoxylan or destarched corn bran for enzymatic hydrolysis. After 24-h incubation, soluble sugars released from arabinoxylan increased up to 30 % with xylanosomes containing a xylanase and bi-functional arabinofuranosidase/xylosidase over the corresponding free, unstructured enzymes. Additionally, xylanosomes with a xylanase and a ferulic acid esterase removed between 15 and 20 % more ferulic acid from wheat arabinoxylan than free enzymes. Furthermore, xylanosomes exhibited synergy with cellulases on destarched corn bran, suggesting a possible use of these nanostructures in cellulose hydrolysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Fontes, C. M., & Gilbert, H. J. (2010). Annual Review of Biochemistry, 79, 655–681.

    Article  CAS  Google Scholar 

  2. Adams, J. J., Pal, G., Jia, Z., & Smith, S. P. (2006). Proceedings of the National Academy of Sciences of the United States of America, 103, 305–310.

    Article  CAS  Google Scholar 

  3. Haimovitz, R., Barak, Y., Morag, E., Voronov-Goldman, M., Shoham, Y., Lamed, R., & Bayer, E. A. (2008). Proteomics, 8, 968–979.

    Article  CAS  Google Scholar 

  4. Jindou, S., Soda, A., Karita, S., Kajino, T., Beguin, P., Wu, J. H., Inagaki, M., Kimura, T., Sakka, K., & Ohmiya, K. (2004). Journal of Biological Chemistry, 279, 9867–9874.

    Article  CAS  Google Scholar 

  5. Mechaly, A., Fierobe, H. P., Belaich, A., Belaich, J. P., Lamed, R., Shoham, Y., & Bayer, E. A. (2001). Journal of Biological Chemistry, 276, 9883–9888.

    Article  CAS  Google Scholar 

  6. Pages, S., Belaich, A., Belaich, J. P., Morag, E., Lamed, R., Shoham, Y., & Bayer, E. A. (1997). Proteins, 29, 517–527.

    Article  CAS  Google Scholar 

  7. Fierobe, H. P., Mechaly, A., Tardif, C., Belaich, A., Lamed, R., Shoham, Y., Belaich, J. P., & Bayer, E. A. (2001). Journal of Biological Chemistry, 276, 21257–21261.

    Article  CAS  Google Scholar 

  8. Fierobe, H. P., Bayer, E. A., Tardif, C., Czjzek, M., Mechaly, A., Belaich, A., Lamed, R., Shoham, Y., & Belaich, J. P. (2002). Journal of Biological Chemistry, 277, 49621–49630.

    Article  CAS  Google Scholar 

  9. Fierobe, H. P., Mingardon, F., Mechaly, A., Belaich, A., Rincon, M. T., Pages, S., Lamed, R., Tardif, C., Belaich, J. P., & Bayer, E. A. (2005). Journal of Biological Chemistry, 280, 16325–16334.

    Article  CAS  Google Scholar 

  10. Mingardon, F., Chanal, A., Lopez-Contreras, A. M., Dray, C., Bayer, E. A., & Fierobe, H. P. (2007). Applied and Environmental Microbiology, 73, 3822–3832.

    Article  CAS  Google Scholar 

  11. Vazana, Y., Morais, S., Barak, Y., Lamed, R., & Bayer, E.A. Applied and Environmental Microbiology, 76, 3236–3243.

  12. Mingardon, F., Chanal, A., Tardif, C., Bayer, E. A., & Fierobe, H. P. (2007). Applied and Environmental Microbiology, 73, 7138–7149.

    Article  CAS  Google Scholar 

  13. Mingardon, F., Perret, S., Belaich, A., Tardif, C., Belaich, J. P., & Fierobe, H. P. (2005). Applied and Environmental Microbiology, 71, 1215–1222.

    Article  CAS  Google Scholar 

  14. Hyeon J-e, Yu. K.-O., Suh, D. J., Suh, Y.-W., Lee, S. E., Lee, J., & Han, S. O. (2010). FEMS Microbiology Letters, 310, 39–47.

    Article  Google Scholar 

  15. Tsai, S. L., Oh, J., Singh, S., Chen, R., & Chen, W. (2009). Applied and Environmental Microbiology, 75, 6087–6093.

    Article  CAS  Google Scholar 

  16. Wen, F., Sun, J., & Zhao, H. Applied and Environmental Microbiology. 76, 1251–1260.

  17. Arai, T., Matsuoka, S., Cho, H. Y., Yukawa, H., Inui, M., Wong, S. L., & Doi, R. H. (2007). Proceedings of the National Academy of Sciences of the United States of America, 104, 1456–1460.

    Article  CAS  Google Scholar 

  18. Cirino, P. C., Chin, J. W., & Ingram, L. O. (2006). Biotechnology and Bioengineering, 95, 1167–1176.

    Article  CAS  Google Scholar 

  19. Dien, B. S., Nichols, N. N., & Bothast, R. J. (2001). Journal of Industrial Microbiology and Biotechnology, 27, 259–264.

    Article  CAS  Google Scholar 

  20. Ohta, K., Beall, D. S., Mejia, J. P., Shanmugam, K. T., & Ingram, L. O. (1991). Applied and Environmental Microbiology, 57, 893–900.

    CAS  Google Scholar 

  21. Yanase, H., Sato, D., Yamamoto, K., Matsuda, S., Yamamoto, S., & Okamoto, K. (2007). Applied and Environmental Microbiology, 73, 2592–2599.

    Article  CAS  Google Scholar 

  22. Wagschal, K., Heng, C., Lee, C. C., & Wong, D. W. (2009). Applied Microbiology and Biotechnology, 81, 855–863.

    Article  CAS  Google Scholar 

  23. Wang, B., Cheng, B., & Feng, H. (2008). Biotechnology Letters, 30, 275–279.

    Article  CAS  Google Scholar 

  24. Hayashi, H., Takagi, K. I., Fukumura, M., Kimura, T., Karita, S., Sakka, K., & Ohmiya, K. (1997). Journal of Bacteriology, 179, 4246–4253.

    CAS  Google Scholar 

  25. Wamalwa, B. M., Zhao, G., Sakka, M., Shiundu, P. M., Kimura, T., & Sakka, K. (2007). Bioscience, Biotechnology, and Biochemistry, 71, 688–693.

    Article  CAS  Google Scholar 

  26. Blum, D. L., Kataeva, I. A., Li, X. L., & Ljungdahl, L. G. (2000). Journal of Bacteriology, 182, 1346–1351.

    Article  CAS  Google Scholar 

  27. Kosugi, A., Murashima, K., & Doi, R. H. (2002). Applied and Environmental Microbiology, 68, 6399–6402.

    Article  CAS  Google Scholar 

  28. Ni, Y., Reye, J., & Chen, R. R. (2007). Biotechnology and Bioengineering, 97, 1347–1356.

    Article  CAS  Google Scholar 

  29. Miller, G.L. (1959). Analytical Chemistry, 127–132.

  30. Shin, H. D., McClendon, S., Le, T., Taylor, F., & Chen, R. R. (2006). Biotechnology and Bioengineering, 95, 1108–1115.

    Article  CAS  Google Scholar 

  31. Huang, Y. H., Huang, C. T., & Hseu, R. S. (2005). FEMS Microbiology Letters, 243, 455–460.

    Article  CAS  Google Scholar 

  32. Biely, P., Vrsanska, M., Tenkanen, M., & Kluepfel, D. (1997). Journal of Biotechnology, 57, 151–166.

    Article  CAS  Google Scholar 

  33. Ali, E., Zhao, G., Sakka, M., Kimura, T., Ohmiya, K., & Sakka, K. (2005). Bioscience, Biotechnology, and Biochemistry, 69, 160–165.

    Article  CAS  Google Scholar 

  34. McClendon, S., Shin, H.-D., & Chen, R. (2011). Biotechnology Letters, 33, 47–54.

    Article  CAS  Google Scholar 

  35. Gold, N. D., & Martin, V. J. (2007). Journal of Bacteriology, 189, 6787–6795.

    Article  CAS  Google Scholar 

  36. Raman, B., Pan, C., Hurst, G. B., Rodriguez, M., Jr., McKeown, C. K., Lankford, P. K., Samatova, N. F., & Mielenz, J. R. (2009). PLoS One, 4, e5271.

    Article  Google Scholar 

  37. Saulnier, L., Vigouroux, J., & Thibault, J.-F. (1995). Carbohydrate Research, 272, 241–253.

    Article  CAS  Google Scholar 

  38. Murashima, K., Kosugi, A., & Doi, R. H. (2003). Journal of Bacteriology, 185, 1518–1524.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by grants from USDA-CSREES (2007-02134) and NSF (CBET-0653773, and an NSF grant (through a subcontract from the University of California, Riverside) to RC. SDM acknowledges a graduate fellowship from UNCFSP/NASA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rachel R. Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

McClendon, S.D., Mao, Z., Shin, HD. et al. Designer Xylanosomes: Protein Nanostructures for Enhanced Xylan Hydrolysis. Appl Biochem Biotechnol 167, 395–411 (2012). https://doi.org/10.1007/s12010-012-9680-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-012-9680-1

Keywords

Navigation