Advertisement

Applied Biochemistry and Biotechnology

, Volume 167, Issue 2, pp 285–297 | Cite as

Effect of Acid, Steam Explosion, and Size Reduction Pretreatments on Bio-oil Production from Sweetgum, Switchgrass, and Corn Stover

  • Hui Wang
  • Radhakrishnan SrinivasanEmail author
  • Fei Yu
  • Philip Steele
  • Qi Li
  • Brian Mitchell
  • Aditya Samala
Article

Abstract

Bio-oil produced from biomass by fast pyrolysis has the potential to be a valuable substitute for fossil fuels. In a recent work on pinewood, we found that pretreatment alters the structure and chemical composition of biomass, which influence fast pyrolysis. In this study, we evaluated dilute acid, steam explosion, and size reduction pretreatments on sweetgum, switchgrass, and corn stover feedstocks. Bio-oils were produced from untreated and pretreated feedstocks in an auger reactor at 450 °C. The bio-oil’s physical properties of pH, water content, acid value, density, and viscosity were measured. The chemical characteristics of the bio-oils were determined by gas chromatography–mass spectrometry. The results showed that bio-oil yield and composition were influenced by the pretreatment method and feedstock type. Bio-oil yields of 52, 33, and 35 wt% were obtained from medium-sized (0.68–1.532 mm) untreated sweetgum, switchgrass, and corn stover, respectively, which were higher than the yields from other sizes. Bio-oil yields of 56, 46, and 51 wt% were obtained from 1 % H2SO4-treated medium-sized sweetgum, switchgrass, and corn stover, respectively, which were higher than the yields from untreated and steam explosion treatments.

Keywords

Pretreatment Biomass Pyrolysis Sweetgum Corn stover Switchgrass 

Notes

Acknowledgments

This work was partially funded by the Sustainable Energy Research Centre (SERC) and the Combined Heating and Power (CHP) funding of the Mississippi State University (MSU). The authors thank Aditya Samala, Graduate Research Assistant, Department of Agricultural and Biological Engineering, MSU, for HPLC analysis.

References

  1. 1.
    Agarwal, G. D., & Agarwal, A. K. (1999). TERI Information Monitor on Environmental Science, 4, 79–89.Google Scholar
  2. 2.
    Chum, H. L., & Overend, R. P. (2001). Fuel Processing Technology, 71, 187–195.CrossRefGoogle Scholar
  3. 3.
    USDA (2005) Biomass as feedstock for a bioenergy and bioproducts industry: The Technical Feasibility of Billion-Ton Annual Supply, Technical Report, U.S. Department of Agricultural Forestry Service, April 2005.Google Scholar
  4. 4.
    Bridgwater, A. V., Meierb, D., & Radleinc, D. (1999). Organic Geochemistry, 30, 1479–1493.CrossRefGoogle Scholar
  5. 5.
    Bridgwater, A. V., Czernik, S., & Piskorz, J. (2001). Progress in thermochemical biomass conversation (pp. 977–997). Oxford: Blackwell Science.CrossRefGoogle Scholar
  6. 6.
    Bridgwater, A. V., Toft, A. J., & Brammer, J. G. (2002). Renewable Sustainable Energy Rev., 6, 181–246.CrossRefGoogle Scholar
  7. 7.
    Pattiya, A., James, O. T., & Bridgwater A. V. (2006). The 2nd Joint International Conference on Sustainable Energy and Environment Technology and Policy innovations, Bangkok, Thailand, pp. 21–23.Google Scholar
  8. 8.
    Yang, Y., Sharma, S. R., Burns, J. C., & Cheng, J. (2009). Energy & Fuels, 23, 3759–3766.CrossRefGoogle Scholar
  9. 9.
    Murwanashyaka, J. N., Pakdel, H., & Roy, C. (2001). Purification Technology, 24, 15–165.Google Scholar
  10. 10.
    Garcia-Perez, M., Chaala, A., & Roy, C. (2002). Journal of Analytical and Applied Pyrolysis, 65, 111–136.CrossRefGoogle Scholar
  11. 11.
    Garcia-Perez, M., Chaala, A., & Roy, C. (2002). Journal of Analytical and Applied Pyrolysis, 81, 893–907.Google Scholar
  12. 12.
    Oasmaa, A., Kuoppala, E., Gust, S., & Solantausta, Y. (2003). Energy & Fuels, 17, 1–12.CrossRefGoogle Scholar
  13. 13.
    Oasmaa, A., Kuoppala, E., & Solantausta, Y. (2003). Energy & Fuels, 17, 433–443.CrossRefGoogle Scholar
  14. 14.
    Wang, H., Srinivasan, R., Yu, F., Steele P., Li Q., & Mitchell, B. (2011). Energy & Fuels, 25, 3758–3764.Google Scholar
  15. 15.
    Perlack, R., Wright, L., Turhollow, A., Graham, R., Stokes, B., & Erbach, D. (2005). U.S. Department of Energy Oak Ridge National Laboratory Report. 60 pp.Google Scholar
  16. 16.
    Martin, E., Duke, J., Pelkki, M., Clausen, E. C., & Carrier, D. J. (2010). Applied Biochemistry and Biotechnology, 162, 1660–1668.CrossRefGoogle Scholar
  17. 17.
    Samuel, B. M., & Lynn, A. K. (2005). Biomass and Bioenergy, 28, 515–535.CrossRefGoogle Scholar
  18. 18.
    John, S., Andy, A., Keith, P., Kendrick, K., John, B., Marie, W., & Richard, N. (2003). Journal of Industrial Ecology, 7, 117–146.CrossRefGoogle Scholar
  19. 19.
    Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D., et al. (2008). Determination of structural carbohydrates and lignin in biomass. Laboratory analytical procedure (LAP). National Renewable Energy Laboratory (NREL).Google Scholar
  20. 20.
    Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., & Templeton, D. (2005). Determination of ash in biomass. Laboratory analytical procedure (LAP). National Renewable Energy Laboratory (NREL).Google Scholar
  21. 21.
    Ingram, L., Mohan, D., Steele, P., Strobel, D., Mitchell, B., Mohammad, J., & Cantrell, K. (2008). Energy & Fuels, 22, 614–625.CrossRefGoogle Scholar
  22. 22.
    ASTM D1744-92. Standard test method for determination of water in liquid petroleum products by Karl Fischer reagent. ASTM International, West Conshohocken, PA (withdrawn 2000).Google Scholar
  23. 23.
    Hassan, M. E., Steele, P., & Ingram, L. (2009). Applied Biochemistry and Biotechnology, 154, 182–192.CrossRefGoogle Scholar
  24. 24.
    ASTM D4052-11. Standard test method for density, relative density, and API gravity of liquids by digital density meter. ASTM International, West Conshohocken, PA, 2011, doi: 10.1520/D4052-11.
  25. 25.
    Sensöz, S., Angin, D., & Yorgun, S. (2000). Biomass and Bioenergy, 19, 271–279.CrossRefGoogle Scholar
  26. 26.
    Islam, M. N., Zailani, R., & Ani, F. N. (1999). Renewable Energy, 17, 73–84.CrossRefGoogle Scholar
  27. 27.
    Bauer, W. F., Elias, G., Pryfogle, P. A., & Partin, J. K. (2008). 30th Symposium on Biotechnology for Fuels and Chemicals.Google Scholar
  28. 28.
    Yang, B., & Wyman, C. (2004). Biotechnology and Bioengineering, 86, 88–95.CrossRefGoogle Scholar
  29. 29.
    Scott, D. S., Piskorz, J., & Radelein, D. (1985). Industrial and Engineering Chemistry Process Design and Development, 24, 581–588.CrossRefGoogle Scholar
  30. 30.
    Scott, D. S., Paterson, L., Piskorz, J., & Radlein, D. J. (2001). Analytical and Applied Pyrolysis, 57, 169–176.CrossRefGoogle Scholar
  31. 31.
    Alén, R., Kuoppala, E., & Oesch, P. (1996). Journal of Analytical and Applied Pyrolysis, 36, 137–148.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Hui Wang
    • 1
  • Radhakrishnan Srinivasan
    • 1
    Email author
  • Fei Yu
    • 1
  • Philip Steele
    • 2
  • Qi Li
    • 2
  • Brian Mitchell
    • 2
  • Aditya Samala
    • 1
  1. 1.Department of Agricultural and Biological EngineeringMississippi State UniversityMS StateUSA
  2. 2.Department of Forest ProductsMississippi State UniversityMS StateUSA

Personalised recommendations