Applied Biochemistry and Biotechnology

, Volume 167, Issue 2, pp 250–258 | Cite as

Selective Liquefaction of Wheat Straw in Phenol and Its Fractionation

  • Hongzhang ChenEmail author
  • Yuzhen Zhang
  • Shuangping Xie


For the first time, a method of phenol-selective liquefaction is proposed for the fractionation and multilevel conversion of lignocellulose. Through phenol-selective liquefaction, lignin and hemicellulose are liquefied, with large amounts of cellulose retained in the unliquefied residues. Using a phenol/straw ratio of 3 and a sulfuric acid concentration of 3 %, large amounts of hemicellulose (≥85 %) and lignin (≥70 %) can be liquefied at 100 °C in 30 min, with a high quantity of cellulose (≥80 %) retained. Unliquefied residues from selective liquefaction have higher susceptibility for enzymatic attack. Enzymatic hydrolyzation of residues can be as high as 65 % in 48 h with 40.7 FPU/g of dry materials, which can then be used to prepare sugar platform intermediates. The liquefied products of wheat straw are then resinified with formaldehyde in the presence of NaOH as a catalyst and synthesized into phenol formaldehyde-type resins reaching up to GB/T 14732-2006 standards. Phenol selective liquefaction, a new technology for the fractionation of lignocellulose, achieves effective fractionation and multilevel conversion of straw components. Hence, it is an important tool to achieve full utilization of biomass and high value-added conversion of lignocellulose.


Selective liquefaction Fractionation Biomass Resin adhesive Enzymatic hydrolysis 



This work was financially supported by the National Basic Research Program of China (No. 2011CB707401), the National High Technology Research and Development Program of China (SS2012AA022502), and the National Key Project of Scientific and Technical Supporting Program of China (No. 2011BAD22B02).


  1. 1.
    Chen, H. Z. (2008). Biomass science and Engineering. Beijing: Chemistry Industry Press.Google Scholar
  2. 2.
    Chen, H. Z., & Li, D. M. (2006). Journal of Cellulose Science and Technology, 14, 62–68.Google Scholar
  3. 3.
    Chen, H. Z., & Wang, L. (2008). Chin. Journal of Process Engineering, 8, 676–681.Google Scholar
  4. 4.
    Li, H., Yuan, X., Zeng, G., Huang, D., Huang, H., Tong, J., You, Q., Zhang, J., & Zhou, M. (2010). Bioresource Technology, 101(8), 2860–2866.CrossRefGoogle Scholar
  5. 5.
    Jasiukaitytė, E., Kunaver, M., & Strlič, M. (2009). Cellulose, 16(3), 393–405.CrossRefGoogle Scholar
  6. 6.
    Lee, J. U., & Oh, Y. S. (2010). Turkey Journal of Agriculture, 34, 303–308.Google Scholar
  7. 7.
    Jena, U., Vaidyanathan, N., Chinnasamy, S., & Das, K. (2011). Bioresource Technology, 102(3), 3380–3387.CrossRefGoogle Scholar
  8. 8.
    Wang, M., Leitch, M., & Xu, C. C. (2009). Journal of Industrial and Engineering Chemistry, 15(6), 870–875.CrossRefGoogle Scholar
  9. 9.
    Tymchyshyn, M., & Xu, C. C. (2010). Bioresource Technology, 101(7), 2483–2490.CrossRefGoogle Scholar
  10. 10.
    Jin, Y., Ruan, X., Cheng, X., & Lü, Q. (2011). Bioresource Technology, 102(3), 3581–3583.CrossRefGoogle Scholar
  11. 11.
    Alma, M. H., & Basturk, M. A. (2006). Ind. Crops Production, 24, 171–176.CrossRefGoogle Scholar
  12. 12.
    Yu, F., Liu, Y., Pan, X., Lin, X., Liu, C., Chen, P., & Ruan, R. (2006). Applied Biochemistry and Biotechnology, 129–132, 574–85.CrossRefGoogle Scholar
  13. 13.
    Mun, S. P., & Jang, J. P. (2009). Journal of Industrial and Engineering Chemistry, 15, 743–747.CrossRefGoogle Scholar
  14. 14.
    Mishra, G., & Saka, S. (2011). Bioresource Technology, 102, 10946–10950.CrossRefGoogle Scholar
  15. 15.
    Lee, S. H., Teramoto, Y., & Shiraishi, N. (2002). Journal of Applied Polymer Science, 83, 1473–1481.CrossRefGoogle Scholar
  16. 16.
    Lee, S. H., Teramoto, Y., & Shiraishi, N. (2002). Journal of Applied Polymer Science, 84, 468–472.CrossRefGoogle Scholar
  17. 17.
    Jin, Y., Cheng, X., & Zheng, Z. (2010). Bioresource Technology, 101(6), 2046–2048.CrossRefGoogle Scholar
  18. 18.
    Wang, M., Leitch, M., & Xu, C. (2009). European Polymer Journal, 45(12), 3380–3388.CrossRefGoogle Scholar
  19. 19.
    Robertson, J. B., & Van Soest, P. J. (1981). In W. P. James & T. Theander (Eds.), Analysis of dietary fibre in food, The detergent system of analysis and its application to human foods (pp. 123–158). New York: Marcel Dekke.Google Scholar
  20. 20.
    Lee, S. H., Yoshioka, M., & Shiraishi, N. (2000). Journal of Applied Polymer Science, 78, 311–318.CrossRefGoogle Scholar
  21. 21.
    Miller, G. L. (1959). Analytical Chemistry, 31, 426–428.CrossRefGoogle Scholar
  22. 22.
    Kubicek, C. (1982). Archives of Microbiology, 132, 349–354.CrossRefGoogle Scholar
  23. 23.
    Sun, F. B., & Chen, H. Z. (2008). Bioresource Technology, 99, 5474–5479.CrossRefGoogle Scholar
  24. 24.
    Chandra, R. P., Bura, R., Mabee, W. E., Berlin, A., Pan, X., & Saddler, J. N. (2007). Biofuels, 108, 67–93.CrossRefGoogle Scholar
  25. 25.
    Lee, S. H., & Ohkita, T. (2003). Wood Sci. Technology, 37, 29–38.Google Scholar
  26. 26.
    Mosier, N., Wyman, C., Dale, B., Elander, R., Lee, Y. Y., Holtzapple, M., & Ladisch, M. (2005). Bioresource Technology, 96, 673–686.CrossRefGoogle Scholar
  27. 27.
    Zheng, Y., Pan, Z. L., & Zhang, R. H. (2009). International Journal of Agriculture and Biology Engineering, 2, 51–68.Google Scholar
  28. 28.
    Pan, H., Shupe, T. F., & Hse, C. Y. (2007). Journal of Applied Polymer Science, 105, 3739–3746.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.National Key Laboratory of Biochemical Engineering, Institute of Process EngineeringChinese Academy of SciencesBeijingChina

Personalised recommendations