Skip to main content
Log in

Isolation, Screening, and Optimization of the Fermentation Conditions of Highly Cellulolytic Bacteria from the Hindgut of Holotrichia parallela Larvae (Coleoptera: Scarabaeidae)

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

From the hindgut contents of Holotrichia parallela, 93 cellulolytic bacterial isolates were isolated after enrichment in carboxymethyl cellulose medium. Among these isolates, a novel bacterium, designated HP207, with the highest endoglucanase productivity was selected for further study. This bacterium was identified as Pseudomonas sp. based on the results of the 16S ribosomal DNA analysis, morphological characteristics, and biochemical properties. The production of the endoglucanase was optimized by varying various physical culture conditions using a submerged fermentation method. Under the optimized fermentation conditions, the maximum endoglucanase activity of 1.432 U mL−1 in bacterial cultures was obtained, higher than those of the most widely studied bacteria and fungi, which are the attractive candidates for the commercial producer of cellulase. And the crude endoglucanase enzyme was also highly thermostable; approximately 55 % of the original activity was maintained after pretreatment at 70 °C for 1 h. Thus, from the present study, the bacterium can be added up to the database of cellulolytic bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Willis, J. D., Oppert, C., & Jurat-Fuentes, J. L. (2010). Methods for discovery and characterization of cellulolytic enzymes from insects. Insect Science, 17, 184–198.

    Article  CAS  Google Scholar 

  2. Immanuel, G., Dhanusha, R., Prema, P., & Palavesam, A. (2006). Effect of different growth parameters on endoglucanase enzyme activity by bacteria isolated from coir retting effluents of estuarine environment. International Journal of Environmental Science and Technology, 3, 25–34.

    CAS  Google Scholar 

  3. Baig, M. M. V., Baig, M. L. B., Baig, M. I. A., & Yasmeen, M. (2004). Saccharification of banana agro-waste by cellulolytic enzymes. African Journal of Biotechnology, 3, 447–450.

    CAS  Google Scholar 

  4. Clarke, A. J. (1997). Biodegradation of cellulose: Enzymology and biotechnology (pp. 23–68). Lancaster: Technomic Pub. Co.

    Google Scholar 

  5. Srinivas, R., & Panda, T. (1998). pH and thermal stability studies of carboxymethyl cellulase from intergeneric fusants of Trichoderma reesei/Saccharomyces cerevisiae. Journal of Industrial Microbiology and Biotechnology, 21, 178–183.

    Article  CAS  Google Scholar 

  6. Saratale, G. D., Chen, S. D., Lo, Y. C., Saratale, R. G., & Chang, J. S. (2008). Outlook of biohydrogen production from lignocellulosic feedstock using dark fermentation—A review. Journal of Scientific and Industrial Research, 67, 962–979.

    CAS  Google Scholar 

  7. Zhang, Y. H. P., Himmel, M. E., & Mielenz, J. R. (2006). Outlook for cellulase improvement: Screening and selection strategies. Biotechnology Advances, 24, 452–481.

    Article  CAS  Google Scholar 

  8. Lynd, L. R. (1996). Overview and evaluation of fuel ethanol from cellulosic biomass: Technology, economics, the environment, and policy. Annual Review of Energy and the Environment, 21, 403–465.

    Article  Google Scholar 

  9. Lopes, F. N. (2008). Industrial exploitation of renewable resources: From ethanol production to bioproducts development. Journal of Social Biology, 202, 191–199.

    Article  Google Scholar 

  10. Brune, A. (1998). Termite guts: The world's smallest bioreactors. Trends in Biotechnology, 16, 16–21.

    Article  CAS  Google Scholar 

  11. Sun, J. Z., & Scharf, M. E. (2010). Exploring and integrating cellulolytic systems of insects to advance biofuel technology. Insect Science, 17, 163–165.

    Article  Google Scholar 

  12. Huang, S. W., Zhang, H. Y., Marshall, S., & Jackson, T. A. (2010). The scarab gut: A potential bioreactor for bio-fuel production. Insect Science, 17, 175–183.

    Article  CAS  Google Scholar 

  13. Zhang, H., & Jackson, T. A. (2008). Autochthonous bacterial flora indicated by PCR-DGGE of 16 S rRNA gene fragments from the alimentary tract of Costelytra zealandica (Coleoptera: Scarabaeidae). Journal of Applied Microbiology, 105, 1277–1285.

    Article  CAS  Google Scholar 

  14. Cazemier, A. E., Verdoes, J. C., Van Ooyen, A. J. J., & Op Den Camp, H. J. M. (1999). Molecular and biochemical characterization of two xylanase-encoding genes from Cellulomonas pachnodae. Applied and Environmental Microbiology, 65, 4099–4107.

    CAS  Google Scholar 

  15. Cazemier, A. E., Verdoes, J. C., Reubsaet, F. A. G., Hackstein, J. H. P., Drift, C. V. D., & Op den Camp, H. J. M. (2003). Promicromonospora pachnodae sp. nov., a member of the (hemi)cellulolytic hindgut flora of larvae of the scarab beetle Pachnoda marginata. A Van Leeuwen, 83, 135–148.

    Article  CAS  Google Scholar 

  16. Wenzel, M., Schönig, I., Berchtold, M., Kämpfer, P., & König, H. (2002). Aerobic and facultatively anaerobic cellulolytic bacteria from the gut of the termite Zootermopsis angusticollis. Journal of Applied Microbiology, 92, 32–40.

    Article  CAS  Google Scholar 

  17. Miller, G. L. (1959). Use of dinitrosalicyclic acid reagent for determination of reducing sugar. Analytical Chemistry, 31, 426–428.

    Article  CAS  Google Scholar 

  18. Martin-Laurent, F., Philippot, L., Hallet, S., Chaussod, R., Germon, J. C., Soulas, G., et al. (2001). DNA extraction from soils: old bias for new microbial diversity analysis methods. Applied and Environmental Microbiology, 67, 2354–2359.

    Article  CAS  Google Scholar 

  19. Vladut-Talor, M., Kauri, T., & Kushner, D. J. (1986). Effects of cellulose on growth, enzyme production, and ultrastructure of a Cellulomonas species. Archives of Microbiology, 144, 191–195.

    Article  CAS  Google Scholar 

  20. Abou-Taleb, K. A. A., Mashhoor, W. A., Nasr, S. A., Sharaf, M. S., & Abdel-Azeem, H. H. M. (2009). Nutritional and environmental factors affecting cellulase production by two strains of cellulolytic Bacilli. Australian Journal of Basic and Applied Sciences, 3, 2429–2436.

    CAS  Google Scholar 

  21. Tamura, K., Dudley, J., Nei, M., & Kumar, S. (2007). MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Molecular Biology and Evolution, 24, 1596–1599.

    Article  CAS  Google Scholar 

  22. Crowson, R. A. (1981). The biology of the Coleoptera (p. 802). London: Academic Press.

    Google Scholar 

  23. Crowson, R. A. (1954). The natural classification of the families of Coleoptera. England: Glassey.

    Google Scholar 

  24. Koyama, M., Iwata, R., Yamane, A., Katase, T., & Ueda, S. (2003). Nutrient intake in the third instar larvae of Anomala cuprea and Protaetia orientalis submarmorea (Coleoptera: Scarabaeidae) from a mixture of cow dung and wood chips: Results from stable isotope analyses of nitrogen and carbon. Applied Entomology and Zoology, 38, 305–311.

    Article  Google Scholar 

  25. Kotchoni, S. O., & Shonukan, O. O. (2002). Regulatory mutations affecting the synthesis of cellulase in Bacillus pumilus. World Journal of Microbiology and Biotechnology, 18, 487–491.

    Article  CAS  Google Scholar 

  26. Palleroni, N. J. (2010). The Pseudomonas story. Environmental Microbiology, 12, 1377–1383.

    Article  CAS  Google Scholar 

  27. Brodey, C. L., Rainey, P. B., Tester, M., & Johnstone, K. (1991). Bacterial blotch disease of the cultivated mushroom is caused by an ion channel forming lipodepsipeptide toxin. Molecular Plant-Microbe Interactions, 4, 407–411.

    Article  CAS  Google Scholar 

  28. Young, J. M. (1970). Drippy gill: A bacterial disease of cultivated mushrooms caused by Pseudomonas agarici n. sp. New Zealand Journal of Agricultural Research, 13, 977–990.

    Article  CAS  Google Scholar 

  29. Kodama, K., Kimura, K., & Komagata, K. (1985). Two new species of Pseudomonas: P. oryzihabitans isolated from rice paddy and clinical specimens and P. luteola isolated from clinical specimens. International Journal of Systematic and Evolutionary Microbiology, 35, 467–474.

    CAS  Google Scholar 

  30. Kang, S. W., Park, Y. S., Lee, J. S., Hong, S. I., & Kim, S. W. (2004). Production of cellulases and hemicellulases by Aspergillus niger KK2 from lignocellulosic biomass. Bioresource Technology, 91, 153–156.

    Article  CAS  Google Scholar 

  31. Kotchoni, S. O., & Shonukan, O. O. (2002). Regulatory mutations affecting the synthesis of cellulase in Bacillus pumilus. World Journal of Microbiology and Biotechnology, 18, 487–491.

    Article  CAS  Google Scholar 

  32. Ariffin, H., Hassan, M. A., Shah, U. K. M., Abdullah, N., Ghazali, F. M., & Shirai, Y. (2008). Production of bacterial endoglucanase from pretreated oil palm empty fruit bunch by Bacillus pumilus EB3. Journal of Bioscience and Bioengineering, 106, 231–236.

    Article  CAS  Google Scholar 

  33. Narasimha, G., Sridevi, A., Buddolla, V., Subhosh, C. M., & Rajasekhar, R. B. (2006). Nutrient effects on production of cellulolytic enzymes by Aspergillus niger. African Journal of Biotechnology, 5, 472–476.

    CAS  Google Scholar 

  34. Acharya, P. B., Acharya, D. K., & Modi, H. A. (2008). Optimization for cellulase production by Aspergillus niger using saw dust as substrate. African Journal of Biotechnology, 7, 4147–4152.

    CAS  Google Scholar 

  35. Kocher, G. S., Kalra, K. L., & Banta, G. (2008). Optimization of cellulase production by submerged fermentation of rice straw by Trichoderma harzianum Rut-C 8230. The Internet Journal of Microbiology, 5.

  36. Gautam, S. P., Bundela, P. S., Pandey, A. K., Khan, J., Awasthi, M. K., & Sarsaiya, S. (2011). Optimization for the production of cellulase enzyme from municipal solid waste residue by two novel cellulolytic fungi. Biotechnology Research International, 2011. doi:10.4061/2011/810425

  37. Shanmughapriya, S., Kiran, G. S., Selvin, J., Thomas, T. A., & Rani, C. (2010). Optimization, purification, and characterization of extracellular mesophilic alkaline cellulase from sponge-associated Marinobacter sp. MSI032. Applied Biochemistry and Biotechnology, 162, 625–640.

    Article  CAS  Google Scholar 

  38. Dees, C., Ringleberg, D., Scott, T. C., & Phelps, T. (1995). Characterization of the cellulose-degrading bacterium NCIB 10462. Applied Biochemistry and Biotechnology, 51, 263–274.

    Article  Google Scholar 

  39. Shankar, T., & Isaiarasu, L. (2011). Cellulase production by Bacillus pumilus EWBCM1 under varying cultural conditions. Middle-East Journal of Scientific Research, 8, 40–45.

    CAS  Google Scholar 

  40. Amritkar, N., Kamat, M., & Lali, A. (2003). Expanded bed affinity purification of bacterial α-amylase and cellulase on composite substrate analogue–cellulose matrices. Process Biochemistry, 39, 565–570.

    Article  Google Scholar 

  41. Ray, A. K., Bairagi, A., Ghosh, K. S., & Sen, K. (2007). Optimization of fermentation conditions for cellulase production by Bacillus subtilis CY5 and Bacillus circulans TP3 isolated from fish gut. Acta Ichthyologica et Piscatoria, 37, 47–53.

    Google Scholar 

  42. Guedon, E., Desvaux, M., & Petitdemange, H. (2002). Improvement of cellulolytic properties of Clostridium cellulolyticum by metabolic engineering. Applied and Environmental Microbiology, 68, 53–58.

    Article  CAS  Google Scholar 

  43. Priest, F. G. (1977). Extracellular enzyme synthesis in the genus Bacillus. Bacteriological Reviews, 41, 711–753.

    CAS  Google Scholar 

  44. Mosier, N., Wyman, C., Dale, B., Elande, R. R., Lee, Y. Y., Holtzapple, M., et al. (2005). Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresource Technology, 96, 673–686.

    Article  CAS  Google Scholar 

  45. Kim, J. Y., Hur, S. H., & Hong, J. H. (2005). Purification and characterization of an alkaline cellulase from a newly isolated alkalophilic Bacillus sp. HSH-810. Biotechnology Letters, 27, 313–316.

    Article  CAS  Google Scholar 

  46. Quiroz-Castañeda, R. E., Balcázar-López, E., Dantán-González, E., Martinez, A., Folch-Mallol, J., & Anaya, C. M. (2009). Characterization of cellulolytic activities of Bjerkandera adusta and Pycnoporus sanguineus on solid wheat straw medium. Electronic Journal of Biotechnology, 12.

  47. Christakopoulos, P., Hatzinikolaou, D. G., Fountoukidis, G., Kekos, D., Claeyssens, M., & Macris, B. J. (1999). Purification and mode of action of an alkali-resistant endo-1,4-β-glucanase from Bacillus pumilus. Archives of Biochemistry and Biophysics, 364, 61–66.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Natural Science Foundation of China (no. 30671404), the Special Fund for Agro-scientific Research in the Public Interest (no. 201003025), the earmarked fund for Modern Agro-industry Technology Research System of China (no. CARS-27), and the Specialized Research Fund for the Doctoral Program of Higher Education of China (no. 200805040010). The authors thank Xiaoxue Li and Cong Li for comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongyu Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sheng, P., Huang, S., Wang, Q. et al. Isolation, Screening, and Optimization of the Fermentation Conditions of Highly Cellulolytic Bacteria from the Hindgut of Holotrichia parallela Larvae (Coleoptera: Scarabaeidae). Appl Biochem Biotechnol 167, 270–284 (2012). https://doi.org/10.1007/s12010-012-9670-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-012-9670-3

Keywords

Navigation