Applied Biochemistry and Biotechnology

, Volume 167, Issue 2, pp 327–337 | Cite as

Effect of Gold Nanosphere Surface Chemistry on Protein Adsorption and Cell Uptake In Vitro

  • Amrita Mukhopadhyay
  • Christin Grabinski
  • A. R. M. Nabiul Afrooz
  • Navid B. Saleh
  • Saber HussainEmail author


Gold nanoparticles exhibit unique spectral properties that make them ideal for biosensing, imaging, drug delivery, and other therapeutic applications. Interaction of gold nanoparticles within biological environments is dependent on surface characteristics, which may rely on particular capping agents. In this study, gold nanospheres (GNS) synthesized with different capping agents—specifically citric acid (CA) and tannic acid (TA)—were compared for serum protein adsorption and cellular uptake into a lung epithelial cell line (A549). Both GNS samples exhibited noticeable protein adsorption based on surface charge data after exposure to serum proteins. Light scattering measurements revealed that GNS-CA-protein composites were smaller and less dense compared to GNS-TA-protein composites. The cell uptake characteristics of these nanoparticles were also different. GNS-CA formed large clusters and elicited high uptake, while GNS-TA were taken up as discrete particles, possibly through nonendosomal mechanisms. These results indicate that the capping agents used for GNS synthesis result in unique biological interactions.


Gold nanoparticles Tannic acid Citric acid Surface chemistry Stabilizing agent Cell uptake Protein adsorption 



Ms. Mukhopadhyay was supported through the Wright Scholar program. This research was supported in part by an appointment to the Postgraduate Research Participation Program at the US Air Force Research Laboratory administered by the Oak Ridge Institute for Science and Education through an interagency agreement between the US Department of Energy and USAFRL.

Supplementary material

12010_2012_9666_MOESM1_ESM.docx (153 kb)
ESM 1 (DOC. 153 kb)


  1. 1.
    Agarwal, A., Huang, S. W., O'Donnel, M., et al. (2007). Journal of Applied Physics, 102, 064701.CrossRefGoogle Scholar
  2. 2.
    El-Sayed, I. H., Huang, X., & El-Sayed, M. A. (2005). Nano Letters, 5, 829.CrossRefGoogle Scholar
  3. 3.
    Quian, X., Peng, X. H., Ansari, D. O., et al. (2008). Nature Biotechnology, 26, 83.CrossRefGoogle Scholar
  4. 4.
    Lukianova-Hleb, E. Y., Oginsky, A. O., Shenefelt, D. L., et al. (2011). Journal of Nanomedicine and Nanotechnology, 2, 1000104.Google Scholar
  5. 5.
    Wang, X., Quian, X., Beitler, J. J., et al. (2011). Cancer Research, 71, 1526.CrossRefGoogle Scholar
  6. 6.
    Tuncagil, S., Ozdemir, C., Demirkol, D. O., et al. (2011). Food Chemistry, 127, 1317.CrossRefGoogle Scholar
  7. 7.
    Sanvicens, N., Mannelli, I., Salvador, J. P., et al. (2011). Trends in Analytical Chemistry, 30, 541.CrossRefGoogle Scholar
  8. 8.
    Hao, R. Z., Song, H. B., Zuo, G. M., et al. (2011). Biosensors and Bioelectronics, 26, 3398.CrossRefGoogle Scholar
  9. 9.
    Han, G., Ghosh, P., De, M., & Rotello, V. M. (2007). Nanobiotechnology, 3, 40.CrossRefGoogle Scholar
  10. 10.
    Stobiecka, M., & Hepel, M. (2011). Biomaterials, 32, 3312.CrossRefGoogle Scholar
  11. 11.
    Venkatpurwar, V., Shiras, A., & Pokharkar, V. (2011). International Journal of Pharmaceutics, 314–320, 409.Google Scholar
  12. 12.
    Lynch, I., Cedervall, T., Lundqvist, M., et al. (2007). Advances in Colloid Interfaces, 134–135, 167.CrossRefGoogle Scholar
  13. 13.
    Cedervall, T., Lynch, I., Lindman, S., et al. (2050). Proceedings of the National Academy of Science, 2007, 104.Google Scholar
  14. 14.
    Nel, A. E., Madler, L., Velegol, D., et al. (2009). Nature Materials, 8, 543.CrossRefGoogle Scholar
  15. 15.
    Alkilany, A. M., & Murphy, C. J. (2010). Journal of Nanoparticle Research, 12, 2313.CrossRefGoogle Scholar
  16. 16.
    Yuan, J., Guo, Q. Q., He, X. Z., & Liu, Y. P. (2011). Advances in Materials Research, 194–196, 462.CrossRefGoogle Scholar
  17. 17.
    Neal, H. C., Stolnik, S., Schacht, E., Keawy, E. R., Garnett, M. C., Davis, S. S., & Illum, L. J. (1998). Pharmaceutical Sciences, 87, 1242.CrossRefGoogle Scholar
  18. 18.
    Ehrenberg, M. S., Friedman, A. E., Finkelstein, J. N., et al. (2009). Biomaterials, 30, 603.CrossRefGoogle Scholar
  19. 19.
    Chithrani, B. D., Ghazani, A. A., & Chan, W. C. W. (2006). Nano Letters, 6, 662.CrossRefGoogle Scholar
  20. 20.
    Brewer, S. H., Glomm, W. H., Johnson, M. C., et al. (2005). Langmuir, 21, 9303.CrossRefGoogle Scholar
  21. 21.
    Shang, L., Wang, Y., Jiang, J., & Dong, S. (2007). Langmuir, 23, 2714.CrossRefGoogle Scholar
  22. 22.
    Kaufman, E. D., Belyea, J., Johnson, M. C., et al. (2007). Langmuir, 23, 6053.CrossRefGoogle Scholar
  23. 23.
    Chaudhuri, A., Battaglia, G., & Golestanian, R. (2011). Physical Biology, 8, 046002.CrossRefGoogle Scholar
  24. 24.
    Lee, O. S., Schatz, G. C., & Hurst, S. J. (2011). Biomedical nanotechnology: methods and protocols (Vol. 726, p. 283). New York: Springer.CrossRefGoogle Scholar
  25. 25.
    Jiang, W., Kim, B. Y. S., Rutka, J. T., & Chan, W. C. W. (2008). Nature Nanotechnology, 3, 145.CrossRefGoogle Scholar
  26. 26.
    Heister, E., Neves, V., Silva, S. R. P., et al. (2011). In R. Klingeler & R. B. Sim (Eds.), Carbon nanotubes for biomedical applications (p. 223). Heidelberg: Springer.CrossRefGoogle Scholar
  27. 27.
    Chèvre, R., Bihan, O. L., Beilvert, F., et al. (2011). Nucleic Acids Research, 39, 1610.CrossRefGoogle Scholar
  28. 28.
    Liu, B. R., Huang, Y. W., Winiarz, J. G., et al. (2011). Biomaterials, 32, 3520.CrossRefGoogle Scholar
  29. 29.
    Febvay, S., Marini, D. M., Belcher, A. M., & Clapham, D. E. (2010). Nano Letters, 10, 2211.CrossRefGoogle Scholar
  30. 30.
    Pittella, F., Zhang, M., Lee, Y., et al. (2011). Biomaterials, 32, 3106.CrossRefGoogle Scholar
  31. 31.
    Nakase, I., Kogure, K., & Harashima, H. (2011). In S. Futaki & U. Langel (Eds.), Cell-penetrating peptides: methods and protocols. New York: Springer, 683, 525.Google Scholar
  32. 32.
    Tkachenko, A. G., Xie, H., Coleman, D., et al. (2003). Journal of the American Chemical Society, 125, 4700.CrossRefGoogle Scholar
  33. 33.
    de la Fuente, J. M., & Berry, C. C. (2005). Bioconjugate Chemistry, 16, 1176.CrossRefGoogle Scholar
  34. 34.
    Murdock, R. C., Braydich-Stolle, L., Schrand, A. A., et al. (2008). Toxicological Sciences, 101, 239.CrossRefGoogle Scholar
  35. 35.
    Raper, J. A., & Amal, R. (1993). Particle and Particle Systems Characterization, 10, 239.CrossRefGoogle Scholar
  36. 36.
    Lui, J., Shih, W. Y., Sarikaya, M., & Aksay, I. A. (1990). Physical Review A, 41, 3206.CrossRefGoogle Scholar
  37. 37.
    Saleh, N. B., Pfefferle, L. D., & Elimelech, M. (2010) Influence of Biomacromolecules and Humic Acid on the Aggregation Kinetics of Single-Walled Carbon Nanotubes. Environmental Science & Technology, 44, 2412–2418.Google Scholar
  38. 38.
    Taylor, U., Klein, S., Petersen, S., et al. (2010). Cytometry Part A, 77A, 439.Google Scholar
  39. 39.
    Aelenei, N., Popa, M. I., Novac, O., et al. (2009). Journal of Materials Science, 20, 1095.Google Scholar
  40. 40.
    Chung, K. T., Wong, T. Y., Wei, C. I., et al. (1998). Critical Reviews in Food Science and Nutrition, 38, 421.CrossRefGoogle Scholar
  41. 41.
    Goodman, C. M., McCusker, C. D., Yilmaz, T., & Rotello, V. M. (2004). Bioconjugate Chemistry, 15, 897.CrossRefGoogle Scholar
  42. 42.
    Arnida, Malugin, A., & Ghandehari, H. (2010). Journal of Applied Toxicology, 30, 212.Google Scholar
  43. 43.
    Wang, S., Lu, W., Tovmachenko, O., et al. (2008). Chemical Physics Letters, 463, 145.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Amrita Mukhopadhyay
    • 1
  • Christin Grabinski
    • 1
  • A. R. M. Nabiul Afrooz
    • 1
    • 2
  • Navid B. Saleh
    • 1
    • 2
  • Saber Hussain
    • 1
    Email author
  1. 1.Air Force Research LaboratoryWright Patterson AFBUSA
  2. 2.Department of Civil and Envrionmental EngineeringUniversity of South CarolinaColumbiaUSA

Personalised recommendations