Skip to main content
Log in

A Novel Bioassay for High-Throughput Screening Microorganisms with N-acyl Homoserine Lactone Degrading Activity

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

A novel biosensor strain (Escherichia coli ALM403) that responded to N-acyl homoserine lactone (AHL) was constructed using a luxR-Plux cassette as a regulatory sequence and β-mannanase as a reporter gene. Dinitrosalicylic acid method was used to detect the response of the sensor strain to N-acyl homoserine lactone. By investigating the response to a range of concentrations of N-β-oxooctanoyl-l-homoserine lactone (OOHL), it was demonstrated that the expression of mannanase in E. coli ALM403 could be greatly enhanced by OOHL and resulted in an assayable phenotype. A high-throughput screening approach was developed to isolate AHL-degrading microorganisms, and a marine Halomonas sp. S66-4 showing a marked AHL-degrading ability was successfully isolated. In conclusion, the bioassay system provided a simple and efficient approach to isolate AHL-degrading bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Fuqua, W., Winans, S., & Greenberg, E. (1994). Journal of Bacteriology, 176, 269–275.

    CAS  Google Scholar 

  2. de Kievit, T., & Iglewski, B. (2000). Infection and Immunity, 68, 4839–4849.

    Article  Google Scholar 

  3. Dong, Y., Wang, L., Xu, J., Zhang, H., Zhang, X., & Zhang, L. (2001). Nature, 411, 813–817.

    Article  CAS  Google Scholar 

  4. Dong, Y., Xu, J., Li, X., & Zhang, L. (2000). Proceedings of the National Academy of Sciences of the United States of America, 97, 3526–3531.

    Article  CAS  Google Scholar 

  5. Lin, Y., Xu, J., Hu, J., Wang, L., Ong, S., Leadbetter, J., et al. (2003). Molecular Microbiology, 47(3), 849–60.

    Article  Google Scholar 

  6. Czajkowski, R., & Jafra, S. (2009). Acta Biochimica Polonica, 56(1), 1–16.

    CAS  Google Scholar 

  7. Zhu, J., Chai, Y., Zhong, Z., Li, S., & Winans, S. (2003). Applied and Environmental Microbiology, 69, 6949–6953.

    Article  CAS  Google Scholar 

  8. Winson, M., Swift, S., Fish, L., Throup, J., Jorgensen, F., Chhabra, S., et al. (1998). FEMS Microbiology Letters, 163, 185–192.

    Article  CAS  Google Scholar 

  9. Andersen, J., Heydorn, A., Hentzer, M., Eberl, L., Geisenberger, O., Christensen, B., et al. (2001). Applied and Environmental Microbiology, 67, 575–585.

    Article  CAS  Google Scholar 

  10. McClean, K., Winson, M., Fish, L., Taylor, A., Chhabra, S., Camara, M., et al. (1997). Microbiology, 143, 3703–3711.

    Article  CAS  Google Scholar 

  11. Steindler, L., & Venturi, V. (2007). FEMS Microbiology Letters, 266, 1–9.

    Article  CAS  Google Scholar 

  12. Shaw, P., Ping, G., Daly, S., Cha, C., Cronan, J., Rinehart, K., et al. (1997). Proceedings of the National Academy of Sciences of the United States of America, 94, 6036–6041.

    Article  CAS  Google Scholar 

  13. Seo, M., Lee, B., Pyun, Y., & Park, H. (2011). Bioscience, Biotechnology, and Biochemistry, 75(9), 1789–95.

    Article  CAS  Google Scholar 

  14. Mei, G., Yan, X., Turak, A., Luo, Z., & Zhang, L. (2010). Applied and Environmental Microbiology, 76(15), 4933–4942.

    Article  CAS  Google Scholar 

  15. Jafra, S., & van der Wolf, J. (2004). Journal of Microbiological Methods, 57, 415–420.

    Article  CAS  Google Scholar 

  16. Dhawan, S., & Kaur, J. (2007). Critical Reviews in Biotechnology, 27, 197–216.

    Article  CAS  Google Scholar 

  17. Miller, G. (1959). Analytical Chemistry, 31, 426–428.

    Article  CAS  Google Scholar 

  18. Zhang, L., Murphy, P., Kerr, A., & Tate, M. (1993). Nature, 362, 446–448.

    Article  CAS  Google Scholar 

  19. Cha, C., Gao, P., Chen, Y., Shaw, P., & Farrand, S. (1998). Molecular Plant-Microbe Interactions, 11, 1119–1129.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the National Natural Sciences Foundation of China (u1170303). The authors would like to thank Prof. Qifa Zhang (National Center of Plant Gene Research, PRC) for providing many useful suggestions, Dr. Paul Williams (University of Nottingham, UK) for supplying plasmid pSB403, and Dr. Lianhui Zhang (Institute of Molecular and Cell Biology, Singapore) for providing the sensor strain of A. tumefaciens, strain NT1 (traR; tra::lacZ749).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ziduo Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, P., Gao, Y., Huang, W. et al. A Novel Bioassay for High-Throughput Screening Microorganisms with N-acyl Homoserine Lactone Degrading Activity. Appl Biochem Biotechnol 167, 73–80 (2012). https://doi.org/10.1007/s12010-012-9653-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-012-9653-4

Keywords

Navigation