Skip to main content

Advertisement

Log in

Axenic Cultures of Nitrosomonas europaea and Nitrobacter winogradskyi in Autotrophic Conditions: a New Protocol for Kinetic Studies

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

As a part of a natural biological N-cycle, nitrification is one of the steps included in the conception of artificial ecosystems designed for extraterrestrial life support systems (LSS) such as Micro-Ecological Life Support System Alternative (MELiSSA) project, which is the LSS project of the European Space Agency. Nitrification in aerobic environments is carried out by two groups of bacteria in a two-step process. The ammonia-oxidizing bacteria (Nitrosomonas europaea) realize the oxidation of ammonia to nitrite, and the nitrite-oxidizing bacteria (Nitrobacter winogradskyi), the oxidation of nitrite to nitrate. In both cases, the bacteria achieve these oxidations to obtain an energy and reductant source for their growth and maintenance. Furthermore, both groups also use CO2 predominantly as their carbon source. They are typically found together in ecosystems, and consequently, nitrite accumulation is rare. Due to the necessity of modeling accurately conversion yields and transformation rates to achieve a complete modeling of MELiSSA, the present study focuses on the experimental determination of nitrogen to biomass conversion yields. Kinetic and mass balance studies for axenic cultures of Nitrosomonas europaea and Nitrobacter winogradskyi in autotrophic conditions are performed. The follow-up of these cultures is done using flow cytometry for assessing biomass concentrations and ionic chromatography for ammonium, nitrite, and nitrate concentrations. A linear correlation is observed between cell count and optical density (OD) measurement (within a 10 % accuracy) validating OD measurements for an on-line estimation of biomass quantity even at very low biomass concentrations. The conversion between cell count and biomass concentration has been determined: 7.1 × 1012 cells g dry matter (DM)−1 for Nitrobacter and 6.3 × 1012 cells g DM−1 for Nitrosomonas. Nitrogen substrates and products are assessed redundantly showing excellent agreement for mass balance purposes and conversion yields determination. Although the dominant phenomena are the oxidation of NH +4 into nitrite (0.95 mol mol N−1 for Nitrosomonas europaea within an accuracy of 3 %) and nitrite into nitrate (0.975 mol mol N−1 for Nitrobacter winogradskyi within an accuracy of 2 %), the Nitrosomonas europaea conversion yield is estimated to be 0.42 g DM mol N−1, and Nitrobacter winogradskyi conversion yield is estimated to be 0.27 g DM mol N−1. The growth rates of both strains appear to be dominated by the oxygen transfer into the experimental setups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Godia, F., Albiol, J., Montesinos, J. L., Pérez, J., Creus, N., Cabello, F., Mengual, X., Montras, A., & Lasseur, Ch. (2002). Journal of Biotechnology, 99, 319–330.

    Article  CAS  Google Scholar 

  2. Hendrickx, L., De Wever, H., Hermans, V., Mastroleo, F., Morin, N., Wilmotte, A., Janssen, P., & Mergeay, M. (2006). Research in Microbiology, 157(1), 77–86.

    Article  Google Scholar 

  3. Pérez, J., Poughon, L., Dussap, C. G., Montesinos, J. L., & Godia, F. (2005). Process Biochemistry, 40, 2359–2369.

    Article  Google Scholar 

  4. Wittebolle, L., Verstraete, W., & Boon, N. (2009). Water Research, 43, 4149–4158.

    Article  CAS  Google Scholar 

  5. Delatolla, R., Tufenkji, N., Comeau, Y., Lamarre, D., Gadbois, A., & Berk, D. (2009). Water Research, 43, 1775–1787.

    Article  CAS  Google Scholar 

  6. Dytczak, M. A., Londry, K. L., & Oleszkiewicz, J. A. (2008). Water Research, 42, 2320–2328.

    Article  CAS  Google Scholar 

  7. Haseborg, E., Zamora, T. M., Fröhlich, J., & Frimmel, F. H. (2010). Bioresource Technology, 101, 1701–1706.

    Article  Google Scholar 

  8. Vadivelu, V. M., Keller, J., & Yuan, Z. (2007). Water Research, 41, 826–834.

    Article  CAS  Google Scholar 

  9. Bock, E. (1976). Archives of Microbiology, 108, 305–312.

    Article  CAS  Google Scholar 

  10. Sarioglu, M., Insel, G., Artan, N., & Orhon, D. (2011). Journal of Chemical Technology and Biotechnology, 86, 798–811.

    Article  CAS  Google Scholar 

  11. Chen, R. D., & LaPara, T. M. (2008). Process Biochemistry, 43, 33–41.

    Article  CAS  Google Scholar 

  12. Prosser, J. I., & Embley, T. M. (2002). Antonie Van Leeuwenhoek, 81, 165–179.

    Article  CAS  Google Scholar 

  13. Laanbroek, H. J., Bär-Gilissen, M. J., & Hoogveld, H. L. (2002). Applied and Environmental Microbiology, 68, 1454–1457.

    Article  CAS  Google Scholar 

  14. Chapman, B. D., Schleicher, M., Beuger, A., Gostomski, P., & Thiele, J. H. (2006). Journal of Microbiological Methods, 65, 96–106.

    Article  CAS  Google Scholar 

  15. Güven, D., & Schmidt, I. (2009). Process Biochemistry, 44, 516–520.

    Article  Google Scholar 

  16. Anthonisen, D. J., Loehr, R. C., Prakasam, T. B. S., & Srinath, E. G. (1976). Journal of the Water Pollution Control Federation, 48, 835–852.

    CAS  Google Scholar 

  17. Groeneweg, J., Sellner, B., & Tappe, W. (1994). Water Research, 28, 2561–2566.

    Article  Google Scholar 

  18. Arp, D. J., & Stein, L. Y. (2003). Critical Reviews in Biochemistry and Molecular Biology, 38, 471–495.

    Article  CAS  Google Scholar 

  19. Princic, A., Mahne, I. I., Megusar, F., Paul, E. A., & Tiedje, J. M. (1998). Applied and Environmental Microbiology, 64, 3584–3590.

    CAS  Google Scholar 

  20. Grady, C. P. L., & Lim, H. C. (1980). Biological wastewater treatment, theory and applications (pp. 291–299). New York: Marcel Dekker.

    Google Scholar 

  21. Junier, P., Molina, V., Dorador, C., Hadas, O., Kim, O. S., Junier, T., Witzel, K. P., & Imhoff, J. F. (2010). Applied Microbiology and Biotechnology, 85(3), 425–440.

    Article  CAS  Google Scholar 

  22. Haug, R. T., & Mc Carty, P. L. (1972). Journal of the Water Pollution Control Federation, 44, 2086.

    CAS  Google Scholar 

  23. Montras, A., Pycke, B., Boon, N., Godia, F., Mergeay, M., Hendrickx, L., & Perez, J. (2008). Water Research, 42, 1700–1714.

    Article  CAS  Google Scholar 

  24. Stein, L., & Arp, D. J. (1998). Applied and Environmental Microbiology, 64, 4098–4102.

    CAS  Google Scholar 

  25. Bock, E., Koops, H. P., & Harms, H. (1989). In H. G. Schlegel & B. Bowien (Eds.), Autotrophic bacteria (pp. 81–96). Berlin: Springer-Verlag.

    Google Scholar 

  26. Patton, C. J., & Crouch, S. R. (1977). Analytical Chemistry, 49(3), 464–469.

    Article  CAS  Google Scholar 

  27. Loveless, J. E., & Painter, H. A. (1968). Journal of General Microbiology, 52, 1–14.

    Article  CAS  Google Scholar 

  28. Skinner, F. A., & Walker, N. (1961). Archiv für Mikrobiologie, 38, 339–349.

    Article  Google Scholar 

  29. Drozd, J. W. (1980). In C. J. Knowles (Ed.), Diversity of bacterial respiratory systems (Vol. 2, pp. 87–111). Boca Raton: CRC.

    Google Scholar 

  30. Belser, L. W., & Schmidt, E. L. (1980). FEMS Microbiology Letters, 7, 213–216.

    Article  CAS  Google Scholar 

  31. Helder, W., & De Vries, R. T. P. (1983). Netherlands Journal of Sea Research, 17, 1–18.

    Article  CAS  Google Scholar 

  32. Keen, G. A., & Prosser, J. I. (1987). Archives of Microbiology, 147, 73–79.

    Article  CAS  Google Scholar 

  33. Glover, H. E. (1985). Archives of Microbiology, 142, 45–50.

    Article  CAS  Google Scholar 

  34. Hunik, J. H., Bos, C. G., den Hoogen, M. P., De Gooijer, C. D., & Tramper, J. (1994). Biotechnology and Bioengineering, 43, 1153–1163.

    Article  CAS  Google Scholar 

  35. Brion, N., & Billen, G. (1998). Revue des Sciences de l'eau, 11, 283–302.

  36. Kantartartzi, S. G., Vaiopoulos, E., Kapagiannidis, A., & Aivasidis, A. (2006). Global NEST Journal, 8, 43–51.

    Google Scholar 

  37. Fang, F., Bing-Jie, N., Xiao-Yan, L., Guo-Ping, S., & Han-Qing, Y. (2009). Applied Microbiology and Biotechnology, 83, 1159–1169.

    Article  CAS  Google Scholar 

  38. Park, H. D., & Noguera, D. R. (2007). Journal of Applied Microbiology, 102, 1401–1417.

    Article  CAS  Google Scholar 

  39. Gould, G. W., & Lees, H. (1960). Canadian Journal of Microbiology, 6, 299–307.

    Article  CAS  Google Scholar 

  40. Gay, G., & Corman, A. (1984). Microbial Ecology, 10, 99–105.

    Article  Google Scholar 

  41. Cox, D. J., Bazin, M. J., & Gull, K. (1980). Soil Biology and Biochemistry, 12, 241–246.

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank the European Space Agency for the financial support of this work

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Creuly.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Farges, B., Poughon, L., Roriz, D. et al. Axenic Cultures of Nitrosomonas europaea and Nitrobacter winogradskyi in Autotrophic Conditions: a New Protocol for Kinetic Studies. Appl Biochem Biotechnol 167, 1076–1091 (2012). https://doi.org/10.1007/s12010-012-9651-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-012-9651-6

Keywords

Navigation