Skip to main content

Advertisement

Log in

Development of DNA-Designed Avian IgY Antibodies for Detection of Mycobacterium avium subsp. paratuberculosis Heat Shock Protein 70 (Hsp70) and Anti-Hsp70 Antibodies in the Serum of Normal Cattle

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Mycobacterium avium subsp. paratuberculosis heat shock protein 70 (MAPHsp70) is an immunodominant antigen, which can be used as a subunit vaccine against bovine paratuberculosis. In the present study, we evaluated the immunogenic activities of MAPHsp70 expressed by DNA vaccine in chicken and the use of prepared specific avian IgY antibodies for western blotting and ELISA methods. The gene encoding MAP Hsp70 was subcloned into the eukaryotic expression vector, pcDNA3.1, and the recombinant plasmid (pcDNA3.1-MAP Hsp70) transfected into COS-7 cells. Chickens were also immunized with pcDNA3.1-MAP Hsp70, and egg yolk antibodies extracted from eggs were collected after immunization. DNA-designed IgY antibody was used in Western blotting analysis to detect the expression of MAPHsp70, and in a sandwich ELISA to assess the prevalence of anti-MAPHsp70 antibodies in cattle serum. Western blotting results indicate the expression of rMAP hsp70 in COS-7 cells and sandwich ELISA could detect anti-MAPHsp70 antibodies in 7.5% of cows. Chicken immunization with pcDNA3.1-MAPHsp70 could demonstrate the effective production of anti-MAPHsp70 IgY antibodies. Monospecific anti-MAPHsp70 antibody generated in chickens is useful for detection of MAPHsp70 peptide in cell culture and MAP lysate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Hartl, F. U., & Hayer-Hartl, M. (2002). Molecular chaperones in the cytosol: From nascent chain to folded protein. Science, 295, 1852–1858.

    Article  CAS  Google Scholar 

  2. Kaufmann, S. H. (1990). Heat shock proteins and the immune response. Immunology Today, 11, 129–136.

    Article  CAS  Google Scholar 

  3. Kaufmann, S. H. (1992). Heat shock proteins in health and disease. International Journal of Clinical and Laboratory Research, 21, 221–226.

    Article  CAS  Google Scholar 

  4. Lathigra, R. B., Butcher, P. D., Garbe, T. R., & Young, D. B. (1991). Heat shock proteins as virulence factors of pathogens. Current Topics in Microbiology and Immunology, 167, 125–143.

    Article  CAS  Google Scholar 

  5. Lindquist, S., & Craig, E. A. (1988). The heat-shock proteins. Annual Review of Genetics, 22, 631–677.

    Article  CAS  Google Scholar 

  6. Harmala, L. A., Ingulli, E. G., Curtsinger, J. M., Lucido, M. M., Schmidt, C. S., Weigel, B. J., Blazar, B. R., Mescher, M. F., & Pennell, C. A. (2002). The adjuvant effects of Mycobacterium tuberculosis heat shock protein 70 result from the rapid and prolonged activation of antigen-specific CD8+ T cells in vivo. Journal of Immunology, 169, 5622–5629.

    CAS  Google Scholar 

  7. Massa, C., Melani, C., & Colombo, M. P. (2005). Chaperon and adjuvant activity of hsp70: Different natural killer requirement for cross-priming of chaperoned and bystander antigens. Cancer Research, 65, 7942–7949.

    CAS  Google Scholar 

  8. Van, E. W., van der Zee, R., & Prakken, B. (2005). Heat-shock proteins induce T-cell regulation of chronic inflammation. Nature Reviews Immunology, 5, 318–330.

    Article  Google Scholar 

  9. Cho, B. K., Palliser, D., Guillen, E., Wisniewski, J., Young, R. A., Chen, J., & Eisen, H. N. (2000). A proposed mechanism for the induction of cytotoxic T lymphocyte production by heat shock fusion proteins. Immunity, 12, 263–272.

    Article  CAS  Google Scholar 

  10. Castellino, F., Boucher, P. E., Eichelberg, K., Mayhew, M., Rothman, J. E., Houghton, A. N., & Germain, R. N. (2000). Receptor-mediated uptake of antigen/heat shock protein complexes results in major histocompatibility complex class I antigen presentation via two distinct processing pathways. The Journal of Experimental Medicine, 191, 1957–1964.

    Article  CAS  Google Scholar 

  11. Langelaar, M. F., Hope, J. C., Rutten, V. P., Noordhuizen, J. P., van Eden, W., & Koets, A. P. (2005). Mycobacterium avium ssp. paratuberculosis recombinant heat shock protein 70 interaction with different bovine antigen-presenting cells. Scandinavian Journal of Immunology, 61, 242–250.

    Article  CAS  Google Scholar 

  12. Del, G. G. (1994). Hsp70: A carrier molecule with built-in adjuvanticity. Experientia, 50, 1061–1066.

    Article  Google Scholar 

  13. Suzue, K., & Young, R. A. (1996). Adjuvant-free hsp70 fusion protein system elicits humoral and cellular immune responses to HIV-1 p24. Journal of Immunology, 156, 873–879.

    CAS  Google Scholar 

  14. Koets, A., Hoek, A., Langelaar, M., Overdijk, M., Santema, W., Franken, P., Eden, W., & Rutten, V. (2006). Mycobacterial 70 kD heat-shock protein is an effective subunit vaccine against bovine paratuberculosis. Vaccine, 24, 2550–2559.

    Article  CAS  Google Scholar 

  15. Santema, W., Hensen, S., Rutten, V., & Koets, A. (2009). Heat shock protein 70 subunit vaccination against bovine paratuberculosis does not interfere with current immunodiagnostic assays for bovine tuberculosis. Vaccine, 27, 2312–2319.

    Article  CAS  Google Scholar 

  16. Hoek, A., Rutten, V. P., van der Zee, R., Davies, C. J., & Koets, A. P. (2010). Epitopes of Mycobacterium avium ssp. paratuberculosis 70 kDa heat-shock protein activate bovine helper T cells in outbred cattle. Vaccine, 28, 5910–5919.

    Article  CAS  Google Scholar 

  17. Dvorska, L., Bull, T. J., Bartos, M., Matlova, L., Svastova, P., Weston, R. T., Kintr, J., Parmova, I., van Soolingen, D., & Pavlik, I. (2003). A standardised restriction fragment length polymorphism (RFLP) method for typing Mycobacterium avium isolates links IS901 with virulence for birds. Journal of Microbiological Methods, 55, 11–27.

    Article  CAS  Google Scholar 

  18. Nikbakht, B. G., Jalali, S. A., & Koohi, M. K. (2011). Development of DNA-designed avian IgY antibodies for quantitative determination of bovine interferon-gamma. Applied Biochemistry and Biotechnology, 163, 338–345.

    Article  Google Scholar 

  19. Nikbakht, B. G., Tabatabaei, S., Khormali, M., & Ashrafi, I. (2009). Characterization of IgY antibodies, developed in hens, directed against camel immunoglobulins. Int.J.Vet.Res., 3(1), 37–41.

    Google Scholar 

  20. Stevenson, K., Inglis, N. F., Rae, B., Donachie, W., & Sharp, J. M. (1991). Complete nucleotide sequence of a gene encoding the 70 kd heat shock protein of Mycobacterium paratuberculosis. Nucleic Acids Research, 19, 4552.

    Article  CAS  Google Scholar 

  21. Babiuk, L. A., Babiuk, S. L., Loehr, B. I., & van den Hurk, S. (2000). Nucleic acid vaccines: Research tool or commercial reality. Vet. Immuno. Immunopathol., 76, 1–23.

    Article  CAS  Google Scholar 

  22. Koets, A. P., Rutten, V. P., de Boer, M., Bakker, D., Valentin-Weigand, P., & van Eden, W. (2001). Differential changes in heat shock protein-, lipoarabinomannan-, and purified protein derivative-specific immunoglobulin G1 and G2 isotype responses during bovine Mycobacterium avium subsp. paratuberculosis infection. Infection and Immunity, 69, 1492–1498.

    Article  CAS  Google Scholar 

  23. Koets, A., Rutten, V., Hoek, A., van Mil, F., Muller, K., Bakker, D., Gruys, E., & van Eden, W. (2002). Progressive bovine paratuberculosis is associated with local loss of CD4(+) T cells, increased frequency of gamma delta T cells, and related changes in T-cell function. Infection and Immunity, 70, 3856–3864.

    Article  CAS  Google Scholar 

  24. Chiba, S., Yokota, S., Yonekura, K., Tanaka, S., Furuyama, H., Kubota, H., Fujii, N., & Matsumoto, H. (2006). Autoantibodies against HSP70 family proteins were detected in the cerebrospinal fluid from patients with multiple sclerosis. Journal of Neurological Sciences, 241, 39–43.

    Article  CAS  Google Scholar 

  25. Dubaniewicz, A., Dubaniewicz-Wybieralska, M., Sternau, A., Zwolska, Z., Izycka-Swieszewska, E., Augustynowicz-Kopec, E., Skokowski, J., Singh, M., & Zimnoch, L. (2006). Mycobacterium tuberculosis complex and mycobacterial heat shock proteins in lymph node tissue from patients with pulmonary sarcoidosis. Journal of Clinical Microbiology, 44, 3448–3451.

    Article  Google Scholar 

  26. Salvetti, M., Ristori, G., Buttinelli, C., Fiori, P., Falcone, M., Britton, W., Adams, E., Paone, G., Grasso, M. G., & Pozzilli, C. (1996). The immune response to mycobacterial 70-kDa heat shock proteins frequently involves autoreactive T cells and is quantitatively disregulated in multiple sclerosis. Journal of Neuroimmunology, 65, 143–153.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gholamreza Nikbakht Brujeni.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nikbakht Brujeni, G., Gharibi, D. Development of DNA-Designed Avian IgY Antibodies for Detection of Mycobacterium avium subsp. paratuberculosis Heat Shock Protein 70 (Hsp70) and Anti-Hsp70 Antibodies in the Serum of Normal Cattle. Appl Biochem Biotechnol 167, 14–23 (2012). https://doi.org/10.1007/s12010-012-9648-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-012-9648-1

Keywords

Navigation