Skip to main content
Log in

Co-Culture of Microalgae, Cyanobacteria, and Macromycetes for Exopolysaccharides Production: Process Preliminary Optimization and Partial Characterization

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

In this study, the biomass and exopolysaccharides (EPS) production in co-cultures of microalgae/cyanobacteria and macromycetes was evaluated as a technology for producing new polysaccharides for medical and/or industrial application. Based on biomass and EPS productivity of monocultures, two algae and two fungi were selected and cultured in different co-culture arrangements. The hydrosoluble EPS fractions from mono- and co-cultures were characterized by ¹³C NMR spectroscopy and gas chromatography coupled to mass spectrometry and compared. It was found that co-cultures resulted in the production of an EPS different from those produced by monocultures, showing fungal predominance with microalgal/cyanobacterial traces. Co-cultures conditions were screened (temperature, agitation speed, fungal and microalgae inoculation rate, initial pH, illumination rate, and glucose concentration) in order to achieve maximum biomass and EPS production, resulting in an increase of 33 and 61% in exopolysaccharides and biomass productions, respectively (patent pending).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Chihara, G., Hamuro, J., Maeda, Y. Y., Arai, Y., & Fukuoka, F. (1970). Cancer Research, 30, 2776–2781.

    CAS  Google Scholar 

  2. Fujimiya, Y., Suzuki, Y., Oshiman, K., Kobori, H., Moriguchi, K., Nakashima, H., et al. (1999). Biochemistry and Molecular Biology International, 47, 707–714.

    Google Scholar 

  3. Wasser, S., & Weis, A. (1999). Critical Reviews in Immunology, 19, 65–96.

    CAS  Google Scholar 

  4. Lindequist, U., Niedermeyer, T., & Jülich, W. (2005). eCAM, 2, 285–299.

    Google Scholar 

  5. Fan, L., Soccol, A. T., Pandey, A., & Soccol, C. R. (2007). LWT- Food Science and Technology, 40, 30–36.

    Article  CAS  Google Scholar 

  6. Suzuki, Y., Adachi, Y., Ohno, N., & Yadomae, T. (2001). Biological and Pharmaceutical Bulletin, 24, 811–819.

    Article  CAS  Google Scholar 

  7. Zjawiony, J. K. (2004). Journal of Natural Products, 67, 300–310.

    Article  CAS  Google Scholar 

  8. Sánchez, C. (2009). Biotechnology Advances, 27, 185–194.

    Article  Google Scholar 

  9. Rabinovich, M. L., Bolobova, A. V., & Vasil’chenko. (2004). Applied Biochemistry and Microbiology, 40, 1–17.

    Article  CAS  Google Scholar 

  10. Gutiérrez, A. (1995). PhD Thesis, Facultad de Farmacia, España: Universidad de Sevilla.

  11. Catley, B. (1992). In D. K. Arora, R. P. Elander, K. G. Mukerji (Eds.), Handbook of applied mycology, vol 4: Fungal biotechnology (pp. 259–279). New York: Dekker.

  12. Tribelli, P. M., & López, N. I. (2011). Extremophiles, 15, 541–547.

    Article  CAS  Google Scholar 

  13. Zarrouk, C. (1966). Ph.D Thesis, Université Des Paris, Paris, France

  14. Watanabe, A. (1960). Journal of General and Applied Microbiology, 6, 1–4.

    Article  Google Scholar 

  15. Dubois, M. (1956). Analytical Chemistry, 28, 350–356.

    Article  CAS  Google Scholar 

  16. Somogyi-Nelson. (1952). Journal of Biological Chemistry, 195, 19.

    Google Scholar 

  17. Lowry, O. (1951). Journal of Biological Chemistry, 193, 265.

    CAS  Google Scholar 

  18. Yang, X. M., Beyenal, H., Harkin, G., & Lewandowski, Z. (2000). Journal of Microbiological Methods, 39, 109–119.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. R. Soccol.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Angelis, S., Novak, A.C., Sydney, E.B. et al. Co-Culture of Microalgae, Cyanobacteria, and Macromycetes for Exopolysaccharides Production: Process Preliminary Optimization and Partial Characterization. Appl Biochem Biotechnol 167, 1092–1106 (2012). https://doi.org/10.1007/s12010-012-9642-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-012-9642-7

Keywords

Navigation