Skip to main content
Log in

A Superoxide Dismutase Purified from the Rhizome of Curcuma aeruginosa Roxb. as Inhibitor of Nitric Oxide Production in the Macrophage-like RAW 264.7 Cell Line

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Superoxide dismutase (SOD, EC 1.15.1.1) is a metalloenzyme or antioxidant enzyme that catalyzes the disproportionation of the harmful superoxide anionic radical to hydrogen peroxide and molecular oxygen. Due to its antioxidative effects, SOD has long been applied in medicinal treatment, cosmetic, and other chemical industries. Fifteen Zingiberaceae plants were tested for SOD activity in their rhizome extracts. The crude homogenate and ammonium sulfate cut fraction of Curcuma aeruginosa were found to contain a significant level of SOD activity. The SOD enzyme was enriched 16.7-fold by sequential ammonium sulfate precipitation, diethylaminoethyl cellulose ion exchange, and Superdex 75 gel filtration column chromatography. An overall SOD yield of 2.51 % with a specific activity of 812.20 U/mg was obtained. The enriched SOD had an apparent MW of 31.5 kDa, as judged by sodium dodecyl sulfate polyacrylamide gel electrophoresis, and a pH and temperature optima of 4.0 and 50 °C. With nitroblue tetrazolium and riboflavin as substrates, the K m values were 57.31 ± 0.012 and 1.51 ± 0.014 M, respectively, with corresponding V max values of 333.7 ± 0.034 and 254.1 ± 0.022 μmol min−1 mg protein−1. This SOD likely belongs to the Fe- or Mn-SOD category due to the fact that it was insensitive to potassium cyanide or hydrogen peroxide inhibition, but was potentially weakly stimulated by hydrogen peroxide, and stimulated by Mn2+and Fe2+ ions. Moreover, this purified SOD also exhibited inhibitory effects on lipopolysaccharide-induced nitric oxide production in cultured mouse macrophage cell RAW 264.7 in a dose-dependent manner (IC50 = 14.36 ± 0.15 μg protein/ml).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Foyer, C. H., Lopez-Delgado, H., Dat, J. F., & Scott, I. M. (1997). Plant Physiology, 100, 241–254.

    Article  CAS  Google Scholar 

  2. Foyer, C. H., & Noctor, G. (2003). Plant Physiology, 119, 355–364.

    Article  CAS  Google Scholar 

  3. Boo, Y. C., & Jung, Y. (1999). Plant Physiology, 155, 255–261.

    Article  CAS  Google Scholar 

  4. Low, P. S., & Merida, J. R. (1996). Plant Physiology, 96, 533–542.

    Article  CAS  Google Scholar 

  5. Regoli, F., & Winston, G. W. (1999). Toxicology and Applied Pharmacology, 156, 96–105.

    Article  CAS  Google Scholar 

  6. Ishikawa, Y. (1995). Archives of Insect Biochemistry and Physiology, 28, 387–396.

    Article  CAS  Google Scholar 

  7. Kaminaka, H., Morita, S., Yokoi, H., Masumura, T., & Tanaka, K. (1997). Plant & Cell Physiology, 38, 65–69.

    CAS  Google Scholar 

  8. Weisiger, R. A., & Fridovich, I. (1973). Journal of Biological Chemistry, 248, 3582–3592.

    CAS  Google Scholar 

  9. Kanematsu, S., & Asada, K. (1978). Archives of Biochemistry and Biophysics, 185, 473–482.

    Article  CAS  Google Scholar 

  10. Pavlina, D. A., Maria, A., Ljibka, G., Stanka, S., & Wolfgang, V. (1999). Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 55, 2249–2260.

    Article  Google Scholar 

  11. Bray, R. C., Cockle, S. A., Feilden, E. M., Roberts, P. B., Rotiolio, G., & Calabrese, L. (1974). Biochemical Journal, 139, 43–48.

    CAS  Google Scholar 

  12. Fridovich, I. (1978). Science, 201, 875–880.

    Article  CAS  Google Scholar 

  13. Larsen, K. (1996). Thai Forest Bulletin (Botany), 24, 35–49.

    Google Scholar 

  14. Sirirugsa, P. (1998). Pure and Applied Chemistry, 70, 2111–2118.

    Google Scholar 

  15. Yamada, Y., Kikuzaki, H., & Nakatani, N. (1992). Journal of Antibacterial and Antifungal Agents, 20, 309–311.

    CAS  Google Scholar 

  16. Hiserodt, R. D., Franzblau, S. G., & Rosen, R. T. (1998). Journal of Agricultural Food Chemistry, 46, 2504–2508.

    Article  CAS  Google Scholar 

  17. Al-Yahya, M. A., Rafatullah, S., Mossa, J. S., Ageel, A. M., Al-Said, M. S., & Tariq, M. (1990). Phytotherapy Research, 43, 112–114.

    Article  Google Scholar 

  18. Matsuda, H., Pongpiriyadacha, Y., Morikawa, T., Ochi, M., & Yoshikawa, M. (2003). European Journal of Pharmacology, 471, 59–67.

    Article  CAS  Google Scholar 

  19. Araujo, C. A. C., & Leon, L. L. (2001). Memórias do Instituto Oswaldo Cruz, 96, 723–728.

    Article  CAS  Google Scholar 

  20. Selvam, R., Subramanian, L., Gayathri, R., & Angayarkanni, N. (1995). Journal of Ethnopharmacology, 47, 59–67.

    Article  CAS  Google Scholar 

  21. Itokawa, H., Morita, H., Sumitomo, T., Totsuka, N., & Takeya, K. (1987). Planta Medica, 53, 32–33.

    Article  CAS  Google Scholar 

  22. Murakami, A., Jiwajiinda, S., Koshimizu, K., & Ohigashi, H. (1995). Cancer Letters, 95, 137–146.

    Article  Google Scholar 

  23. Murakami, A., Toyota, K., Ohura, S., Koshimizu, K., & Ohigashi, H. (2000). Journal of Agricultural Food Chemistry, 48, 1518–1523.

    Article  CAS  Google Scholar 

  24. Pal, S., Choudhuri, T., Chattopadhyay, S., Bhattacharya, A., Datta, G. K., Das, T., et al. (2001). Biochemical and Biophysical Research Communications, 288, 658–665.

    Article  CAS  Google Scholar 

  25. Othman, R., Ibrahim, H., Mohd, M. A., Awang, K., Gilani, A. H., & Mustafa, M. R. (2002). Planta Medica, 68, 655–657.

    Article  CAS  Google Scholar 

  26. Ammon, H. P. T., & Wahl, M. A. (1991). Planta Medica, 57, 1–7.

    Article  CAS  Google Scholar 

  27. Hikino, H., Kiso, Y., Kato, N., Hamada, Y., Shioiri, T., Aiyama, R., et al. (1985). Journal of Ethnopharmacology, 14, 31–39.

    Article  CAS  Google Scholar 

  28. Noro, T., Miyase, T., Kuroyanagi, M., Ueno, A., & Fukushima, S. (1983). Chemical and Pharmaceutical Bulletin, 31, 2708–2711.

    Article  CAS  Google Scholar 

  29. Yu, Z. F., Kong, L. D., & Chen, Y. (2002). Journal of Ethnopharmacology, 83, 161–165.

    Article  CAS  Google Scholar 

  30. Halliwell, B., Gutteridge, J.M.C. (1989). Free radicals in biology and medicine (2nd edn). Oxford: Oxford University Press.

  31. Vang, O., Mortensen, J., & Andersen, O. (2001). Metabolism, Clinical and Experimental, 50, 1130–1135.

    Article  CAS  Google Scholar 

  32. Alscher, R. G., Erturk, N., & Heath, L. S. (2002). Journal of Experimental Botany, 53, 1331–1341.

    Article  CAS  Google Scholar 

  33. Lai, L. S., Chang, P. C., & Chang, C. T. (2008). Journal of Agricultural and Food Chemistry, 56, 8121–8129.

    Article  CAS  Google Scholar 

  34. Bollag, D.M., Rozycki, M.D., and Edelstein, S.J. (1996). Protein methods (2nd edn). New York: Wiley-Liss, Inc.

  35. Chopra, R. K., & Sabarinath, S. (2004). Biochemical and Biophysical Research Communications, 320, 1187–1192.

    Article  Google Scholar 

  36. Laemmli, U. K. (1970). Nature, 227, 680–685.

    Article  CAS  Google Scholar 

  37. Bradford, M. M. (1976). Analytical Biochemistry, 72, 248–254.

    Article  CAS  Google Scholar 

  38. Sevilla, F., Gorge, J. L., Gomez, M., & Rio, L. A. D. (1980). Planta, 150, 153–157.

    Article  CAS  Google Scholar 

  39. Duke, M. V., & Salin, M. L. (1985). Archives of Biochemistry and Biophysics, 243, 305–314.

    Article  CAS  Google Scholar 

  40. Kumar, S., Dhillon, S., Singh, D., & Singh, R. (2004). Journal of Food Sciences & Nutrition, 9, 283–288.

    Article  CAS  Google Scholar 

  41. Sulochana, K. N., & Venkaiah, B. (1990). Biochemistry International, 22, 133–140.

    Article  CAS  Google Scholar 

  42. Hayakawa, T., Kanematsu, S., & Asada, K. (1985). Planta, 166, 111–116.

    Article  CAS  Google Scholar 

  43. Río, L. A., Sandalio, L. M., Altomare, D. A., & Zilinskas, B. A. (2003). Journal of Experimental Botany, 54, 923–933.

    Article  Google Scholar 

  44. Fridovich, I. (1995). Annual Review of Biochemistry, 64, 97–112.

    Article  CAS  Google Scholar 

  45. Misra, H. P., & Fridovich, I. (1972). Journal of Biological Chemistry, 247, 3410–3414.

    CAS  Google Scholar 

  46. Beauchamp, C. O., & Fridovich, I. (1973). Biochimica et Biophysica Acta, 317, 50–64.

    CAS  Google Scholar 

  47. Lumsden, J., & Hall, D. O. (1974). Biochemical and Biophysical Research Communications, 58, 35–41.

    Article  CAS  Google Scholar 

  48. Rabinowitch, H. D., & Sklan, D. (1981). Plant Physiology, 52, 380–384.

    Article  CAS  Google Scholar 

  49. Federico, R., Medda, R., & Floris, G. (1985). Plant Physiology, 78, 357–358.

    Article  CAS  Google Scholar 

  50. Sivaprakasam, G., Singh, D., Dhillon, S., Malhotra, S. P., Ahlawat, T. R., & Singh, R. (2004). Physiology and Molecular Biology of Plants, 10, 59–64.

    CAS  Google Scholar 

  51. Babitha, M. P., Prakash, H. S., & Shetty, H. S. (2002). Plant Science, 163, 917–924.

    Article  CAS  Google Scholar 

  52. Klebanoff, S.J. (1988). Basic principles and clinical correlates. New York: Raven Press.

  53. Halliwell, B. (1990). Free Radical Research Communications, 9, 1–32.

    Article  CAS  Google Scholar 

  54. Foschi, D., Trabucchi, E., Musazzi, M., Castoldi, L., Di Mattia, D., Radaelli, E., et al. (1998). International Journal of Tissue Reactions, 10, 373–379.

    Google Scholar 

  55. Lynch, R., & Fridovich, I. (1978). Journal of Biological Chemistry, 253, 1838–1845.

    CAS  Google Scholar 

  56. Puig-Parellada, P., & Planas, M. (1978). Biochemical Pharmacology, 27, 535–537.

    Google Scholar 

  57. Leopold, F. (1988). Molecular and Cellular Biochemistry, 84, 123–131.

    Article  Google Scholar 

  58. Null, G. (1997). The clinician’s handbook of natural healing. New York: Kensington Books.

Download references

Acknowledgments

The authors thank the 90th Anniversary of Chulalongkorn University fund, the National Research University Project of CHE, the Ratchadaphiseksomphot Endowment Fund (AG001B, AM1019A, and AS613A), and the Thai Government Stimulus Package 2 (TKK2555), for financial support of this research, as well as the Institute of Biotechnology and Genetic Engineering for support and facilities. We also thank Dr. Robert Butcher (Publication Counseling Unit, Chulalongkorn University) for his constructive comments in preparing this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aphichart Karnchanatat.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moon-ai, W., Niyomploy, P., Boonsombat, R. et al. A Superoxide Dismutase Purified from the Rhizome of Curcuma aeruginosa Roxb. as Inhibitor of Nitric Oxide Production in the Macrophage-like RAW 264.7 Cell Line. Appl Biochem Biotechnol 166, 2138–2155 (2012). https://doi.org/10.1007/s12010-012-9640-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-012-9640-9

Keyword

Navigation