Skip to main content
Log in

Granulation of Nitrifying Bacteria in a Sequencing Batch Reactor for Biological Stabilisation of Source-Separated Urine

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Biological stabilisation of human urine highly depends on the abundance and activities of nitrifying bacteria. However, it is quite difficult to enrich nitrifiers as bio-aggregation by self-immobilized biomass. In this study, granulation of nitrifying bacteria involving inoculation strategy was developed. Two sequencing batch reactors, the one inoculated with nitrifying bacteria and the other inoculated with aerobic granules, were operated in laboratory side by side with a feeding of urine solution. Aerobic nitrifying granules (ANG), with compact morphological structure and good nitrifying activity, were achieved in the reactor inoculated with aerobic granules. Enrichment of nitrifying bacteria favors the nutrient uptake, and hence, to obtain a high ammonia oxidation efficiency. Nonetheless, nitrite accumulation gradually dominated in reactor, partly attributes to a high concentration of free nitrous acid and free ammonia in bulk. The matured ANG had a rather stable microbial profile, as that a number of activated bacteria occupied the surface of granule. It was also found that ANG were much more impermeable than aerobic granules and activated sludge, which was demonstrated as smaller porosities, and therewith an excellent settleability. The results herein reveal that granulation of nitrifying bacteria could enrich the biomass to implement stabilisation of urine in biological way.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Larsen, T. A., & Gujer, W. (1997). The concept of sustainable urban water management. Water Science and Technology, 35(9), 3–10.

    Article  CAS  Google Scholar 

  2. Maurer, M., Pronk, W., & Larsen, T. A. (2006). Treatment processes for source-separated urine. Water Research, 40, 3151–3166.

    Article  CAS  Google Scholar 

  3. Wilsenach, J. A., & van Loosdrecht, M. C. M. (2004). Effects of separate urine collection on advanced nutrient removal processes. Environmental Science and Technology, 38, 1208–1215.

    Article  CAS  Google Scholar 

  4. Mihelcic, J. R., Fry, L. M., & Shaw, R. (2011). Global potential of phosphorus recovery from human urine and feces. Chemosphere, 84, 832–839.

    Article  CAS  Google Scholar 

  5. Etter, B., Tilley, E., Khadka, R., & Udert, K. M. (2011). Low-cost struvite production using source-separated urine in Nepal. Water Research, 45, 852–862.

    Article  CAS  Google Scholar 

  6. Karak, T., & Bhattacharyya, P. (2011). Human urine as a source of alternative natural fertilizer in agriculture: a flight of fancy or an achievable reality. Resources, Conservation and Recycling, 55, 400–408.

    Article  Google Scholar 

  7. Wilsenach, J. A., Schuurbiers, C. A. H., & van Loosdrecht, M. C. M. (2007). Phosphate and potassium recovery from source separated urine through struvite precipitation. Water Research, 41, 458–466.

    Article  CAS  Google Scholar 

  8. Udert, K. M., Larsen, T. A., & Gujer, W. (2003). Urea hydrolysis and precipitation dynamics in a urine-collecting system. Water Research, 37(11), 2571–2582.

    Article  CAS  Google Scholar 

  9. Udert, K. M., Munster, C. F. M., Larsen, T. A., Siegrist, H., & Gujer, W. (2003). Nitrification and autotrophic denitrification of source-separated urine. Water Science and Technology, 48(1), 119–130.

    CAS  Google Scholar 

  10. Feng, D., Wu, Z., & Xu, S. (2008). Nitrification of human urine for its stabilisation and nutrient recycling. Bioresource Technology, 99, 6299–6304.

    Article  CAS  Google Scholar 

  11. Ruiz, G., Jeison, D., & Chamy, R. (2003). Nitrification with high nitrite accumulation for the treatment of wastewater with high ammonia concentration. Water Research, 37, 1371–1377.

    Article  CAS  Google Scholar 

  12. Tsuneda, S., Nagano, T., Hoshino, T., Ejiri, Y., Noda, N., & Hirata, A. (2003). Characterization of nitrifying granules produced in an aerobic up-flow fluidized bed reactor. Water Research, 37, 4965–4973.

    Article  CAS  Google Scholar 

  13. Adav, S. S., Lee, D. J., Show, K. K., & Tay, J. H. (2008). Aerobic granular sludge: recent advances. Biotechnology Advance, 26, 411–423.

    Article  CAS  Google Scholar 

  14. Arrojo, B., Mosquera-Corral, A., & Garrido, J. M. (2004). Aerobic granulation with industrial wastewater in sequencing batch reactors. Water Research, 38, 3389–3399.

    Article  CAS  Google Scholar 

  15. Li, J. Y., Chen, Y., Li, J., Zhang, D. H., Wang, S. G., Wang, L. J., et al. (2006). Morphological and structural characteristics of aerobic granulation. Journal of Chemical Technology and Biotechnology, 81, 823–830.

    Article  CAS  Google Scholar 

  16. Yang, S. F., Tay, J. H., & Liu, Y. (2003). A novel granular sludge sequencing batch reactor for removal of organic and nitrogen from wastewater. Journal of Biotechnology, 106, 77–86.

    Article  CAS  Google Scholar 

  17. Li, A. J., Yang, S. F., Li, X. Y., & Gu, J. D. (2008). Microbial population dynamics during aerobic sludge granulation at different organic loading rates. Water Research, 42, 3552–3560.

    Article  CAS  Google Scholar 

  18. Yang, S. F., Li, X. Y., & Yu, H. Q. (2008). Formation and characterisation of fungal and bacterial granules under different feeding alkalinity and pH conditions. Process Biochemistry, 43, 8–14.

    Article  Google Scholar 

  19. de Beer, D., van den Heuvel, J. C., & Ottengraf, S. P. (1993). Microelectrode measurements of the activity distribution in nitrifying bacterial aggregates. Applied Environment Microbiology, 59, 573–579.

    Google Scholar 

  20. Tsuneda, S., Park, S., Hayashi, H., Jung, J., & Hirata, A. (2001). Enhancement of nitrifying biofilm formation using selected EPS produced by heterotrophic bacteria. Water Science and Technology, 43(6), 197–204.

    CAS  Google Scholar 

  21. Tay, J. H., Yang, S. F., & Lin, Y. (2002). Hydraulic selection pressure-induced nitrifying granulation in sequencing batch reactors. Applied Microbiology Biotechnology, 59, 332–337.

    Article  CAS  Google Scholar 

  22. Liu, Y. Q., Wu, W. W., Tay, J. H., & Wang, J. L. (2008). Formation and long-term stability of nitrifying granules in a sequencing batch reactor. Bioresource Technology, 99, 3919–3922.

    Article  CAS  Google Scholar 

  23. Shi, X. Y., Yu, H. Q., Sun, Y. J., & Huang, X. (2009). Characteristics of aerobic granules rich in autotrophic ammonium-oxidizing bacteria in a sequencing batch reactor. Chemical Engineering Journal, 147, 102–109.

    Article  CAS  Google Scholar 

  24. Larsen, P., Nielsen, J. L., Svendsen, T. C., & Nielsen, P. H. (2008). Adhesion characteristics of nitrifying bacteria in activated sludge. Water Research, 42, 2814–2826.

    Article  CAS  Google Scholar 

  25. Shi, X. Y., Sheng, G. P., Li, X. Y., & Yu, H. Q. (2010). Operation of a sequencing batch reactor for cultivating autotrophic nitrifying granules. Bioresource Technology, 101, 2960–2964.

    Article  CAS  Google Scholar 

  26. Belmonte, M., Vázquez-Padín, J. R., Figueroa, M., Franco, A., Mosquera-Corral, A., Campos, J. L., et al. (2009). Characteristics of nitrifying granules developed in an air pulsing SBR. Process Biochemistry, 44, 602–606.

    Article  CAS  Google Scholar 

  27. Xiao, F., Yang, S. F., & Li, X. Y. (2008). Physical and hydrodynamic properties of aerobic granules produced in sequencing batch reactors. Separation and Purification Technology, 63, 634–641.

    Article  CAS  Google Scholar 

  28. Li, X. Y., & Yuan, Y. (2002). Settling velocities and permeabilities of microbial aggregates. Water Research, 36, 3110–3120.

    Article  CAS  Google Scholar 

  29. Sun, F. Y., Yang, C. Y., Li, J. Y., & Yang, Y. J. (2006). Influence of different substrates on the formation and characteristics of aerobic granules in sequencing batch reactors. Journal of Environmental Science, 18(5), 864–871.

    Article  CAS  Google Scholar 

  30. APHA-AWWA-WEF. (1998). Standard methods for the examination of water and wastewater (20th ed.). Washington: American Public Health Association/American Water Works Association/Water Environment Federation.

    Google Scholar 

  31. Li, D. H., & Ganczarczyk, J. J. (1990). Structure of activated-sludge flocs. Biotechnology and Bioengineering, 35, 57–65.

    Article  CAS  Google Scholar 

  32. Adav, S. S., Lee, D. J., & Lai, J. Y. (2009). Proteolytic activity in stored aerobic granular sludge and structural integrity. Bioresource Technology, 100(1), 68–73.

    Article  CAS  Google Scholar 

  33. Li, X. M., Liu, Q. Q., Yang, Q., Guo, L., Zeng, M. G., Hu, J. M., et al. (2009). Enhanced aerobic sludge granulation in sequencing batch reactor by Mg2+ augmentation. Bioresource Technology, 100, 64–67.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was funded by the National Key Technology R&D Program in the 11th Five Year Plan of China (2006BAB17B06) and Ministry of Housing and Urban-Rural Development of People’s Republic of China (2008-K7-8).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fei-Yun Sun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, FY., Yang, YJ., Dong, WY. et al. Granulation of Nitrifying Bacteria in a Sequencing Batch Reactor for Biological Stabilisation of Source-Separated Urine. Appl Biochem Biotechnol 166, 2114–2126 (2012). https://doi.org/10.1007/s12010-012-9638-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-012-9638-3

Keyword

Navigation