Skip to main content

Advertisement

Log in

Bioethanol Production Involving Recombinant C. thermocellum Hydrolytic Hemicellulase and Fermentative Microbes

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The enhancement of the biomass productivity of Escherichia coli cells harbouring the truncated 903 bp gene designated as glycoside hydrolase family 43 (GH43) from Clostridium thermocellum showing hemicellulase activity along with its further use in simultaneous saccharification and fermentation (SSF) process is described. (Phosphoric acid) H3PO4–acetone treatment and ammonia fibre expansion (AFEX) were the pretreatment strategies employed on the leafy biomass of mango, poplar, neem and asoka among various substrates owing to their high hemicellulose content. GH43 showed optimal activity at a temperature of 50 °C, pH 5.4 with stability over a pH range of 5.0–6.2. A 4-fold escalation in growth of the recombinant E. coli cells was observed when grown using repeated batch strategy in LB medium supplemented with glucose as co-substrate. Candida shehatae utilizing pentose sugars was employed for bioethanol production. AFEX pretreatment proved to be better over acid–acetone technique. The maximum ethanol concentration (1.44 g/L) was achieved for AFEX pretreated mango (1%, w/v) followed by poplar with an ethanol titre (1.32 g/L) in shake flask experiments. A 1.5-fold increase in ethanol titre (2.11 g/L) was achieved with mango (1%, w/v) in a SSF process using a table top 2-L bioreactor with 1 L working volume.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Uihlein, A., & Schbek, L. (2009). Biomass and Bioenergy, 33, 793–802.

    Article  CAS  Google Scholar 

  2. Campbell, C. H., & Laherrere, J. H. (1998). Scientific American, 78–83.

  3. Lynd, L. R., & Wang, M. Q. (2003). Journal of Industrial Ecology, 7, 17–32.

    Article  Google Scholar 

  4. Sarkar, N., Ghosh, S. K., Bannerjee, S., & Aikat, K. (2011). Renewable Energy. doi:10.1016/j.renene.2011.06.045.

  5. Mabee, W. E., & Saddler, J. N. (2010). Bioresource Technology, 101, 4806–4813.

    Google Scholar 

  6. Balat, M., Balat, H., & Oz, C. (2008). Progress in Energy and Combustion, 34, 551–573.

    Article  CAS  Google Scholar 

  7. Juha, T., Szengyel, Z., Reczey, K., SiikaAho, M., & Viikari, L. (2004). Process Biochemistry, 40, 3519–3525.

    Google Scholar 

  8. Mtui, G. Y. S. (2009). African Journal of Biotechnology, 8, 1398–1415.

    CAS  Google Scholar 

  9. Moniruzzaman, M. (1996). Applied Biochemistry and Biotechnology, 59, 283–297.

    Article  CAS  Google Scholar 

  10. Chowdary, G. V., Krishna, S. H., & Reddy, T. J. (2001). Bioresource Technology, 77, 193–196.

    Article  Google Scholar 

  11. Aspinnal, G. O. (1970). In Chemistry of cell wall polysaccharides, vol. 3: The biochemistry of plants (pp. 473–500). New York: Academic.

  12. Suzuki, S., Fukuoka, M., Ookuchi, H., Sano, M., & Ozeki, K. (2009). Journal of Bioscience and Bioengineering, 109, 115–117.

    Article  Google Scholar 

  13. Davies, G. J., Gloster, T. M., & Henrissat, B. (2005). Current Opinion in Structural Biology, 15, 637–645.

    Article  CAS  Google Scholar 

  14. Cantarel, B. L., Coutinho, P. M., Rancurel, C., & Bernard, T. (2009). Nucleic Acids Research, 37, 233–238.

    Article  Google Scholar 

  15. Xiong, J. S., Balland-Vanney, M., Xie, Z. P., & Schultze, M. (2007). Journal of Experimental Botany, 58, 2799–2810.

    Article  CAS  Google Scholar 

  16. Corrall, O. L., & Ortega, F. V. (2006). In: R.G. Guevara-González, I. Torres-Pacheco (Eds.), Advances in agricultural and food biotechnology. Xylanases (pp 305–322). Trivandrum: Research Signpost

  17. Lairson, L. L., Henrissat, B., Davies, G. J., & Withers, S. G. (2008). Annual Review of Biochemistry, 77, 521–555.

    Article  CAS  Google Scholar 

  18. Demain, A. L., Newcomb, M., & Wu, J. H. (2005). Microbiology and Molecular Biology Reviews, 69, 181–186.

    Article  Google Scholar 

  19. Gilbert, H. J., & Fontes, C. M. G. A. (2010). Annual Review of Biochemistry, 79, 655–681.

    Article  Google Scholar 

  20. Abbi, M., Kuhad, R. C., & Singh, A. (1997). Process Biochemistry, 31, 555–560.

    Article  Google Scholar 

  21. Wickerman, L. J. (1951). In Taxonomy of yeasts, US Department of Agriculture Technical Bulletin No. 1029 (pp. 1–56). Washington, DC: US Department of Agriculture.

  22. Grodberg, J., & Dunn, J. J. (1988). Journal of Bacteriology, 170, 1245–1253.

    CAS  Google Scholar 

  23. Sambrook, J., Fritsch, E. F., & Maniatis, T. (1989). In Molecular cloning: A laboratory manual, vol. 1 (2nd ed.), Plainview (pp. 1.82–1.84). New York: Cold Spring Harbor Laboratory.

  24. Nelson, N. (1944). Journal of Biological Chemistry, 153, 375–380.

    CAS  Google Scholar 

  25. Somogyi, M. (1945). Journal of Biological Chemistry, 160, 69–73.

    CAS  Google Scholar 

  26. Laemmli, U. K. (1970). Nature, 227, 680–685.

    Article  CAS  Google Scholar 

  27. Numan, M. T., & Bhosle, N. B. (2006). Journal of Industrial Microbiology and Biotechnology, 33, 247–260.

    Article  CAS  Google Scholar 

  28. Fan, Z., Werkman, J., & Yuan, L. (2009). Biotechnology Letters, 31, 751–757.

    Article  CAS  Google Scholar 

  29. Sun, Y., & Cheng, J. Y. (2002). Bioresource Technology, 83, 1–11.

    Article  CAS  Google Scholar 

  30. Bals, B., Rogers, C., Jin, M., Balan, V., & Dale, B. (2010). Biotechnology Biofuels, 3, 1–11.

    Article  Google Scholar 

  31. Bradford, M. (1976) Annals of Biochemistry, 72, 248–254.

    Google Scholar 

  32. Seo, H. B., Kim, H. J., & Jung, H. K. (2009). Journal of Industrial Microbiology and Biotechnology, 36, 285–292.

    Article  CAS  Google Scholar 

  33. Sluiter, B., Hames, R., Ruiz, C., Scarlata, J., Sluiter, D., & Templeton, D. (2008). In Determination of structural carbohydrates and lignin in substrates, laboratory analytical procedure (LAP). Technical report NREL/TP-510, 42618. Golden: NREL

  34. Zhang, M., Wang, F., Su, R., Qi, W., & He, Z. (2010). Bioresource Technology, 101, 4959–4964.

    Article  CAS  Google Scholar 

  35. Johnston, W., Cord-Ruwisch, R., & Cooney, M. (2002). Bioprocess and Biosystems Engineering, 25, 111–120.

    Article  CAS  Google Scholar 

  36. Li, H., Kim, N. J., Jiang, M., Kang, J. W., & Chang, H. N. (2009). Bioresource Technology, 100, 3245–3251.

    Article  CAS  Google Scholar 

  37. Howard, R. L., Abotsi, E., Howard, S., & Rensburg, E. L. J. V. (2003). African Journal of Biotechnology, 12, 602–619.

    Google Scholar 

  38. Chandel, K., Kapoor, R. K., Kuhad, R. C., & Singh, A. (2007). Bioresource Technology, 98, 1947–1950.

    Article  CAS  Google Scholar 

  39. Reddy, H. K., Srijana, M., Reddy, M. D., & Reddy, G. (2010). African Journal of Biotechnology, 9, 1926–1934.

    Google Scholar 

  40. Ruiz, E., Cara, C., Ballesteros, M., Manzanares, P., Ballesteros, I., & Castro, E. (2006). Applied Biochemistry and Biotechnology, 129, 631–643.

    Article  Google Scholar 

  41. Santos, D. S., Camelo, A. C., Rodrigues, K. C. P., Carlos, L. C., & Pereira, N., Jr. (2010). Applied Biochemistry and Biotechnology, 161, 93–105.

    Article  Google Scholar 

  42. Lever, M., Ho, G., & CordRuwisch, R. (2010). Bioresource Technology, 101, 7083–7087.

    Article  CAS  Google Scholar 

  43. Mutreja, R., Das, D., Goyal, D., & Goyal, A. (2011). Enzyme Research. doi:10.4061/2011/340279

Download references

Acknowledgments

The research work and S. P. Das supported by a project grant from Department of Biotechnology, Ministry of Science and Technology, New Delhi, India to AG is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arun Goyal.

Additional information

Saprativ P. Das, Rajeev Ravindran and Shadab Ahmed contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Das, S.P., Ravindran, R., Ahmed, S. et al. Bioethanol Production Involving Recombinant C. thermocellum Hydrolytic Hemicellulase and Fermentative Microbes. Appl Biochem Biotechnol 167, 1475–1488 (2012). https://doi.org/10.1007/s12010-012-9618-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-012-9618-7

Keywords

Navigation