Skip to main content
Log in

Butanol Production from Cane Molasses by Clostridium saccharobutylicum DSM 13864: Batch and Semicontinuous Fermentation

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Clostridium acetobutylicum strains used in most Chinese ABE (acetone–butanol–ethanol) plants favorably ferment starchy materials like corn, cassava, etc., rather than sugar materials. This is one major problem of ABE industry in China and significantly limits the exploitation of cheap waste sugar materials. In this work, cane molasses were utilized as substrate in ABE production by Clostridium saccharobutylicum DSM 13864. Under optimum conditions, total solvent of 19.80 g/L (13.40 g/L butanol) was reached after 72 h of fermentation in an Erlenmeyer flask. In a 5-L bioreactor, total solvent of 17.88 g/L was attained after 36 h of fermentation, and the productivity and yield were 0.50 g/L/h and 0.33 g ABE/g sugar consumption, respectively. To further enhance the productivity, a two-stage semicontinuous fermentation process was steadily operated for over 8 days (205 h, 26 cycles) with average productivity (stage II) of 1.05 g/L/h and cell concentration (stage I) of 7.43 OD660, respectively. The average batch fermentation time (stage I and II) was reduced to 21−25 h with average solvent of 15.27 g/L. This study provides valuable process data for the development of industrial ABE fermentation process using cane molasses as substrate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Van der Merwe, A.B. (2010) Dissertation, University of Stellenbosch, South Africa.

  2. Qureshi, N., & Blaschek, H. P. (2001). Journal of Industrial Microbiology & Biotechnology, 27, 292–297.

    Article  CAS  Google Scholar 

  3. Dürre, P. (2007). Biotechnology Journal, 2, 1525–1534.

    Article  Google Scholar 

  4. Ni, Y., & Sun, Z. H. (2009). Applied Microbiology and Biotechnology, 83, 415–423.

    Article  CAS  Google Scholar 

  5. Thang, V. H., Kanda, K., & Kobayashi, G. (2010). Applied Biochemistry and Biotechnology, 161, 157–170.

    Article  CAS  Google Scholar 

  6. Qureshi, N., & Blaschek, H. P. (2001). Journal of Industrial Microbiology & Biotechnology, 27, 287–291.

    Article  CAS  Google Scholar 

  7. Lee, S. Y., Park, J. H., Jang, S. H., Nielsen, L. K., Kim, J., & Jung, K. S. (2008). Biotechnology and Bioengineering, 101, 209–228.

    Article  CAS  Google Scholar 

  8. Liew, S. T., Arbakariya, A., Rosfarizan, M., & Raha, A. R. (2006). Malaysian Journal of Microbiolgy, 2, 42–50.

    Google Scholar 

  9. Pei, J. X., Zuo, W. P., Pang, H., Huang, Z. M., Li, Z. C., Wei, Y. T., et al. (2010). Liquor-Making Science & Technology, 5, 32–35 (in Chinese).

    Google Scholar 

  10. Fan, J. H., Feng, W. L., Di, S. M., Yan, H. R., Jia, J. J., & Wang, Z. P. (2010). Journal of Bioprocess Engineering, 8, 6–9 (in Chinese).

    CAS  Google Scholar 

  11. Madihah, M. S., Ariff, A. B., Sahaid, K. M., Suraini, A. A., & Karim, M. I. A. (2001). World Journal of Microbiology and Biotechnology, 17, 567–576.

    Article  CAS  Google Scholar 

  12. Liu, Z. Y., Ying, Y., Li, F. L., Ma, C. Q., & Xu, P. (2010). Journal of Industrial Microbiology & Biotechnology, 37, 495–501.

    Article  CAS  Google Scholar 

  13. Qureshi, N., Saha, B. C., Dien, B., Hector, R. E., & Cotta, M. A. (2010). Biomass and Bioenergy, 34, 559–565.

    Article  CAS  Google Scholar 

  14. Lee, T. M., Ayaaki, I., Sadazo, Y., & Kensuke, F. (1995). Biotechnology Letters, 17, 649–654.

    Article  Google Scholar 

  15. Cho, D. H., Lee, Y. J., Um, Y., Sang, B. I., & Kim, Y. H. (2009). Applied Microbiology and Biotechnology, 83, 1035–1043.

    Article  CAS  Google Scholar 

  16. Kotzamanidis, C., Roukas, T., & Skaracis, G. (2002). World Journal of Microbiology and Biotechnology, 18, 441–448.

    Article  CAS  Google Scholar 

  17. Patil, S. G., Gokhale, D. V., & Patil, B. G. (1989). Biotechnology Letters, 11, 213–216.

    Article  CAS  Google Scholar 

  18. Liu, Y. P., Zheng, P., Sun, Z. H., Ni, Y., Dong, J. J., & Zhu, L. L. (2008). Bioresource Technology, 99, 1736–1742.

    Article  CAS  Google Scholar 

  19. Syed, Q. (1994) Ph.D. dissertation, University of the Punjab, Pakistan.

  20. Pătraşcu, E., Râpeanu, G., Bonciu, C., Vicol, C., & Bahrim, G. (2009). Ovidius University Annals of Chemistry, 20, 199–204.

    Google Scholar 

  21. Jiang, L., Wang, J. F., Liang, S. Z., Wang, X. N., Cen, P. L., & Xu, Z. N. (2009). Bioresource Technology, 100, 3403–3409.

    Article  CAS  Google Scholar 

  22. Sharma, A., Vivekanand, V., & Singh, R. P. (2008). Bioresource Technology, 99, 3444–3450.

    Article  CAS  Google Scholar 

  23. Ikram-ul, H., Ali, S., Qadeer, M. A., & Iqbal, J. (2004). Bioresource Technology, 93, 125–130.

    Article  CAS  Google Scholar 

  24. Syed, Q. A., Nadeem, M., & Nelofer, R. (2008). Turkish Journal of Biochemistry, 33, 25–30.

    CAS  Google Scholar 

  25. Shaheen, R., Shirley, M., & Jones, D. T. (2000). Journal of Molecular Microbiology and Biotechnology, 2, 115–124.

    CAS  Google Scholar 

  26. Qureshi, N., Lolas, A., & Blaschek, H. P. (2001). Journal of Industrial Microbiology & Biotechnology, 26, 290–295.

    Article  CAS  Google Scholar 

  27. Qureshi, N., Saha, B. C., Hector, R. E., & Cotta, M. A. (2008). Biomass and Bioenergy, 32, 1353–1358.

    Article  CAS  Google Scholar 

  28. Qureshi, N., Saha, B. C., Hector, R. E., Dien, B., Hughes, S., Liu, S., et al. (2010). Biomass and Bioenergy, 34, 566–571.

    Article  CAS  Google Scholar 

  29. Fu, T.T. (1974) Dissertation, Texas Tech University, Texas, USA.

  30. Dong, J. J., Zheng, P., Sun, Z. H., Ni, Y., & Liu, Y. P. (2008). Journal of Chemical Industry and Engineering, 59, 1490–1495 (in Chinese).

    CAS  Google Scholar 

  31. Wee, Y. J., Kim, J. N., Yun, J. S., & Ryu, H. W. (2004). Enzyme and Microbial Technology, 35, 568–573.

    Article  CAS  Google Scholar 

  32. Tsuey, L. S., Ariff, A. B., Mohamad, R., & Rahim, R. A. (2006). Biotechnology and Bioprocess Engineering, 11, 293–298.

    Article  CAS  Google Scholar 

  33. Gu, Y., Hu, S. Y., Chen, J., Shao, L. J., He, H. Q., Yang, Y. L., et al. (2009). Journal of Industrial Microbiology & Biotechnology, 36, 1225–1232.

    Article  CAS  Google Scholar 

  34. Bae, S. O., & Shoda, M. (2005). Applied Microbiology and Biotechnology, 67, 45–51.

    Article  CAS  Google Scholar 

  35. Abou-Zeid, A. A., Fouad, M., & Yassein, M. (1978). Zentralbl Bakteriol Naturwiss, 133(2), 125–134.

    CAS  Google Scholar 

  36. Parekh, M., & Blaschek, H. P. (1999). Biotechnology Letters, 21, 45–48.

    Article  CAS  Google Scholar 

  37. Oshiro, M., Hanada, K., Tashiro, Y., & Sonomoto, K. (2010). Applied Microbiology and Biotechnology, 87, 1177–1185.

    Article  CAS  Google Scholar 

  38. Ezeji, T., Qureshi, N., & Blaschek, H. P. (2007). Biotechnology and Bioengineering, 97, 1460–1469.

    Article  CAS  Google Scholar 

  39. Chaiklahan, R., Chirasuwan, N., Siangdung, W., Paithoonrangsarid, K., & Bunnag, B. (2010). Journal of Microbiology and Biotechnology, 20, 609–614.

    Article  CAS  Google Scholar 

  40. Bauer, R., Katsikis, N., Varga, S., & Hekmat, D. (2005). Bioprocess and Biosystems Engineering, 5, 37–43.

    Article  Google Scholar 

  41. Sanada, K., Kawaguchi, A., Furuya, T., Ishihara, K., Nakajima, N., & Hamada, H. (2000). Journal of Molecular Catalysis B: Enzymatic, 11, 59–61.

    Article  CAS  Google Scholar 

  42. Afschar, A. S., Vaz Rossell, C. E., & Schaller, K. (1990). Applied Microbiology and Biotechnology, 34, 168–171.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the support of New Century Excellent Talents in University (NCET-11-0658), the Program of Introducing Talents of Discipline to Universities No. 111-2-06, the Priority Academic Program Development of Jiangsu Higher Education Institutions, and Green Biologics Ltd (Oxfordshire, UK).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ye Ni.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Fig. A1

The effect of pH (a), trace element (b), nitrogen sources (c), and content of calcium carbonate (d) on ABE fermentation by C. saccharobutylicum DSM 13864. The fermentation medium and conditions were as follows: (a) 6% cane molasses, 3.2 g/L CaCO3, 2 g/L (NH4)2SO4, 0.5 g/L K2HPO4, pH 5.6−8.0, 35 °C; (b) 6% cane molasses, 3.2 g/L CaCO3, 2 g/L (NH4)2SO4, 0.5 g/L K2HPO4, 0.01 g/L trace element, pH 6.0, 35 °C; (c) 6% cane molasses, 3.2 g/L CaCO3, 2 g/L inorganic nitrogen sources or 2 g/L (NH4)2SO4, and 10 g/L organic nitrogen sources, 0.5 g/L K2HPO4, pH 6.0, 35 °C; (d) 6% cane molasses, 2.4−4.0 g/L CaCO3, 2 g/L (NH4)2SO4, 0.5 g/L K2HPO4, 20 g/L CSP, 0.01 g/L MnSO4·H2O, pH 6.0, 37 °C (JPEG 9 kb)

High resolution image (TIFF 4849 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ni, Y., Wang, Y. & Sun, Z. Butanol Production from Cane Molasses by Clostridium saccharobutylicum DSM 13864: Batch and Semicontinuous Fermentation. Appl Biochem Biotechnol 166, 1896–1907 (2012). https://doi.org/10.1007/s12010-012-9614-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-012-9614-y

Keywords

Navigation