Skip to main content
Log in

Intrinsic Characteristics of Cr6+-Resistant Bacteria Isolated from an Electroplating Industry Polluted Soils for Plant Growth-Promoting Activities

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The Cr6+-resistant plant growth-promoting bacteria was isolated from soil samples that were collected from an electroplating industry at Coimbatore, India, that had tolerated chromium concentrations up to 500 mg Cr6+/L in Luria-Bertani medium. Based on morphology, physiology, and biochemical characteristics, the strain was identified as Bacillus sp. following the Bergey's manual of determinative bacteriology. Evaluation of plant growth-promoting parameters has revealed the intrinsic ability of the strain for the production of indole-3-acetic acid (IAA), siderophore, and solubilization of insoluble phosphate. Bacillus sp. have utilized tryptophan as a precursor for their growth and produced IAA (122 μg/mL). Bacillus sp. also exhibited the production of siderophore that was tested qualitatively using Chrome Azurol S (CAS) assay solution and utilized the insoluble tricalcium phosphate as the sole source of phosphate exhibiting higher rate of phosphate solubilization after 72 h of incubation (1.45 μg/mL). Extent of Cr6+ uptake and accumulation of Cr6+ in the cell wall of Bacillus sp. was investigated using atomic absorption spectrophotometer and scanning electron microscope-energy dispersive spectroscopy, respectively. The congenital capability of this Cr6+-resistant plant growth-promoting Bacillus sp. could be employed as bacterial inoculum for the improvement of phytoremediation in heavy metal contaminated soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Rajkumar, M., Nagendran, R., Lee, K. J., Lee, W. H., & Kim, S. Z. (2006). Influence of plant growth promoting bacteria and Cr6+ on the growth of Indian mustard. Chemosphere, 62, 741–748.

    Article  CAS  Google Scholar 

  2. Ishibashi, Y., Cervantes, C., & Silver, S. (1990). Chromium reduction in Pseudomonas putida. Applied and Environmental Microbiology, 56, 2268–2270.

    CAS  Google Scholar 

  3. Rajkumar, M., Ma, Y., & Freitas, H. (2008). Characterization of metal-resistant plant-growth promoting Bacillus weihenstephanensis isolated from serpentine soil in Portugal. Journal of Basic Microbiology, 48, 500–508.

    Article  CAS  Google Scholar 

  4. Cunningham, S. D., Berti, W. R., & Huang, J. W. (1995). Phytoremediation of contaminated soils. Trends in Biotechnology, 13, 393–397.

    Article  CAS  Google Scholar 

  5. Ma, Y., Rajkumar, M., Vicente, J. A. F., & Freitas, H. (2011). Inoculation of Ni-resistant plant growth promoting bacterium Psychrobacter sp. strain srs8 for the improvement of nickel phytoextraction by energy crops. International Journal of Phytorem, 13, 126–139.

    Article  CAS  Google Scholar 

  6. Blaylock, J. M., Salt, D. E., Dushenkov, S., Zakharova, O., Gussman, C., Kapulnik, Y., et al. (1997). Enhanced accumulation of Pb in Indian mustard by soil-applied chelating agents. Environmental Science and Technology, 31, 860–865.

    Article  Google Scholar 

  7. Puschenreiter, M., Stoger, G., Lombi, E., Horak, O., & Wenzel, W. W. (2001). Phytoextraction of heavy metal contaminated soils with Thlaspi goesingense and Amaranthus hybridus: Rhizosphere manipulation using EDTA and ammonium sulfate. Journal of Plant Nutrition and Soil Science, 164, 615–621.

    Article  CAS  Google Scholar 

  8. Rajkumar, M., & Freitas, H. (2008). Effects of inoculation of plant-growth promoting bacteria on Ni uptake by Indian mustard. Bioresource Technology, 99, 3491–3498.

    Article  CAS  Google Scholar 

  9. Burd, G. I., Dixon, D. G., & Glick, B. R. (2000). Plant growth promoting bacteria that decreases heavy metal toxicity in plants. Canadian Journal of Microbiology, 46, 237–245.

    Article  CAS  Google Scholar 

  10. Wang, P. C., Mori, T., Komori, K., Sasatsu, M., Toda, K., & Ohtake, H. (1989). Isolation and characterization of an Enterobacter cloacae strain that reduces hexavalent chromium under anaerobic conditions. Applied and Environmental Microbiology, 55, 1665–1669.

    CAS  Google Scholar 

  11. Puppi, G., Azcón, R., & Höflich, G. (1994). Management of positive interactions of arbuscular mycorrhizal fungi with essential groups of soil microorganisms. In S. Gianinazzi & H. Schüepp (Eds.), Impact of arbuscular mycorrhizas on sustainable agriculture and natural ecosystems (pp. 201–215). Basel: ALS, Birkhäuser-Verlag.

    Chapter  Google Scholar 

  12. Whiting, S. N., de Souza, M. P., & Terry, N. (2001). Rhizosphere bacteria mobilize Zn for hyperaccumulation by Thlaspi caerulescens. Environmental Science and Technology, 15, 3144–3150.

    Article  Google Scholar 

  13. Glick, B. R., Patten, C. L., Holguin, G., & Penrose, G. M. (1999). Biochemical and genetic mechanisms used by plant growth promoting bacteria. London: Imperial College.

    Book  Google Scholar 

  14. Rajkumar, M., Ae, N., Prasad, M. N. V., & Freitas, H. (2010). Potential of siderophore producing bacteria for improving heavy-metal phytoextraction. Trends in Biotechnology, 28, 142–149.

    Article  CAS  Google Scholar 

  15. Rajkumar, M., Nagendran, R., Lee, K. J., & Lee, W. H. (2005). Characterization of a novel Cr6+ reducing Pseudomonas sp. with plant growth-promoting potential. Current Microbiology, 50, 266–271.

    Article  CAS  Google Scholar 

  16. Dworkin, M., & Foster, J. (1958). Experiments with some microorganisms which utilize ethane and hydrogen. Journal of Bacteriology, 75, 592–601.

    CAS  Google Scholar 

  17. Holt, J. G., Krieg, R. N., Sneath, P. H. A., Staley, J. T., & William, S. T. (1994). Bergey's manual of determinative bacteriology (9th ed.). Philadelphia: Lippincott William & Wilkins.

    Google Scholar 

  18. Bric, J. M., Bostock, R. M., & Silversone, S. E. (1991). Rapid in situ assay for indole acetic acid production by bacteria immobilization on a nitrocellulose membrane. Applied and Environmental Microbiology, 57, 535–538.

    CAS  Google Scholar 

  19. Schwyn, B., & Neilands, J. B. (1987). Universal chemical assay for detection and determination of siderophores. Analytical Biochemistry, 160, 47–56.

    Article  CAS  Google Scholar 

  20. Sundara-Rao, W. V. B., & Sinha, M. K. (1963). Phosphate dissolving microorganisms in the soil and rhizosphere. Indian Journal of Agricultural Sciences, 33, 272–278.

    Google Scholar 

  21. Fiske, C. H., & Subbarow, Y. (1925). A colorimetric determination of phosphorus. Journal of Biological Chemistry, 66, 375–400.

    CAS  Google Scholar 

  22. Jacobson, C. B., Pasternak, J. J., & Glick, B. R. (1994). Partial purification and characterization of ACC deaminase from the plant growth promoting rhizobacteruim Pseodomonas putida GR12-2. Canadian Journal of Microbiology, 40, 1019–1025.

    Article  CAS  Google Scholar 

  23. Hasnain, S., Yasmin, S., & Yasmin, A. (1993). The effects of lead resistant pseudomonads on the growth of Triticum aestivum seedlings under lead stress. Environmental Pollution, 81, 179–184.

    Article  CAS  Google Scholar 

  24. Freitas, H., Prasad, M. N. V., & Pratas, J. (2004). Analysis of serpentinophytes from north-east of Portugal for trace metal accumulation-relevance to the management of mine environment. Chemosphere, 54, 1625–1642.

    Article  CAS  Google Scholar 

  25. Pal, A., Dutta, S., Mukherjee, P. K., & Paul, A. K. (2005). Occurrence of heavy metal-resistance in microflora from serpentine soil of Andaman. Journal of Basic Microbiology, 45, 207–218.

    Article  CAS  Google Scholar 

  26. Abou-Shanab, R. A., Van Berkum, P., & Angle, J. S. (2007). Heavy metal resistance and genotypic analysis of metal resistance genes in gram-positive and gram-negative bacteria present in Ni-rich serpentine soil and in the rhizosphere of Alyssum murale. Chemosphere, 68(2), 360–367.

    Article  CAS  Google Scholar 

  27. Glick, B. R., Penrose, D. M., & Li, J. (1998). A model for the lowering of plant ethylene concentrations by plant growth promoting bacteria. Journal of Theoretical Biology, 190, 63–68.

    Article  CAS  Google Scholar 

  28. Gupta, A., Meyer, J. M., & Goel, R. (2002). Development of heavy metal resistant mutants of phosphate solubilizing Pseudomonas sp. NBRI4014 and their characterization. Current Microbiology, 45, 323–327.

    Article  CAS  Google Scholar 

  29. Garcia de Salamone, I. E., Hynes, R. K., & Nelson, L. N. (2001). Cytokinin production by plant growth promoting rhizobacteria and selected mutants. Canadian Journal of Microbiology, 47, 103–113.

    Article  Google Scholar 

  30. Xie, H., Pasternak, J. J., & Glick, B. R. (1996). Isolation and characterization of mutants of the plant growth-promoting rhizobacterium Pseudomonas putida GR12-2 that over produce indole acetic acid. Current Microbiology, 32, 67–71.

    Article  CAS  Google Scholar 

  31. Dell’Amico, E., Cavalca, L., & Andreoni, V. (2005). Analysis of rhizobacterial communities in perennial Graminaceae from polluted water meadow soil, and screening of metal-resistant, potentially plant growth-promoting bacteria. FEMS Microbiology Ecology, 52, 153–162.

    Article  Google Scholar 

  32. Atkin, C. L., Neilands, J. B., & Phaff, H. J. (1970). Rhodotorulic acid from species of Leucosporidium, Rhodosporidium, Rhodotorula, Sporidiobolus, and Sporobolomyces, and a new alanine-containing ferrichrome from Cryptococcus melibiosum. Journal of Bacteriology, 103, 722–733.

    CAS  Google Scholar 

  33. Drechsel, H., Tschierske, M., Thieken, A., Jung, G., Zahner, H., & Winkelmann, G. (1995). The carboxylate type siderophore rhizoferrin and its analogues produced by directed fermentation. Journal of Industrial Microbiology, 14, 105–112.

    Article  CAS  Google Scholar 

  34. Evers, A., Hancock, R. D., Martell, A. E., & Motekaitis, R. J. (1989). Metal ion recognition in ligands with negatively charged oxygen donor groups. Complexation of Fe(III), Ga(III), In(III), Al(III) and other highly charged metal ions. Inorganic Chemistry, 28, 2189–2195.

    Article  CAS  Google Scholar 

  35. van der Lelie, D., Corbisier, P., Diels, L., Gilis, A., Lodewyckx, C., Mergeay, M., et al. (1999). The role of bacteria in the phytoremediation of heavy metals. In N. Terry & G. Banuelos (Eds.), Phytoremediation of contaminated soil and water (pp. 265–281). London: Lewis Publishers.

    Google Scholar 

  36. Mishra, D., & Kar, M. (1974). Nickel in plant growth and metabolism. The Botanical Review, 40, 395–452.

    Article  CAS  Google Scholar 

  37. Crowley, D. E., Reid, C. P. P., & Szaniszlo, P. J. (1988). Utilization of microbial siderophores in iron acquisition by oat. Plant Physiology, 87, 680–685.

    Article  CAS  Google Scholar 

  38. Zaidi, S., Usmani, S., Singh, B. R., & Musarrat, J. (2006). Significance of Bacillus subtilis strain SJ-101 as a bioinoculant for concurrent plant growth promotion and nickel accumulation in Brassica juncea. Chemosphere, 64, 991–997.

    Article  CAS  Google Scholar 

  39. Cunningham, J. E., & Kuiack, C. (1992). Production of citric and oxalic acids and solubilization of calcium phosphate by Penicillium billai. Applied and Environmental Microbiology, 52, 1451–1458.

    Google Scholar 

  40. Bar-Yousef, B., Rogers, R. D., Wolfram, J. H., & Richman, E. (1999). Pseudomonas cepacia-mediated rock phosphate solubilization in kaolinite and montmorillonite suspensions. Soil Science Society of America Journal, 63, 1703–1708.

    Article  Google Scholar 

  41. Bano, N., & Mussarat, J. (2003). Isolation and characterization of phorate degrading soil bacteria of environmental and agronomic significance. Letters in Applied Microbiology, 36, 349–353.

    Article  CAS  Google Scholar 

  42. Ma, Y., Rajkumar, M., & Freitas, H. (2009). Inoculation of plant growth promoting bacterium Achromobacter xylosoxidans strain Ax10 for the improvement of copper phytoextraction by Brassica juncea. Journal of Environmental Management, 90, 831–837.

    Article  Google Scholar 

  43. Halstead, R. L., Finn, B. J., & MacLean, A. J. (1969). Extractability of nickel added to soils and its concentration in plants. Canadian Journal of Soil Science, 49, 335–342.

    Article  CAS  Google Scholar 

  44. Johncy Rani, M., Hemambika, B., Hemapriya, J., & Rajesh Kannan, V. (2010). Comparative assessment of heavy metal removal by immobilized and dead bacterial cells: A biosorption approach. African Journal of Environmental Science and Technology, 4(2), 77–83.

    CAS  Google Scholar 

  45. Sag, Y., Ozer, D., & Kutsal, T. (1995). A comparative study of the biosorption of Pb(II) ions to Z. ramigera and R. arrhitus. Process Biochemistry, 30, 169–174.

    CAS  Google Scholar 

  46. Tsekova, K., & Ilieva, S. (2001). Copper removal from aqueous solution using Aspergillus niger mycelia in free and polyurethane bound form. Applied Microbiology and Biotechnology, 42, 636–637.

    Article  Google Scholar 

  47. Hemambika, B., Johncy Rani, M., & Rajesh Kannan, V. (2011). Biosorption of heavy metals by immobilized and dead fungal cells: A comparative assessment. Journal of Ecology and the Nature Environment, 3(5), 168–175.

    CAS  Google Scholar 

  48. Alam, M. Z., & Ahmad, S. (2011). Chromium removal through biosorption and bioaccumulation by bacteria from tannery effluents contaminated soil. Clean - Soil, Air, Water, 39, 226–237.

    Article  CAS  Google Scholar 

  49. Beveridge, T. J. (1988). The bacterial surface: General considerations towards design and function. Canadian Journal of Microbiology, 34, 363–372.

    Article  CAS  Google Scholar 

  50. Mullen, M. D., Wolf, D. C., Ferris, F. G., Beveridge, T. J., Flemming, C. A., & Bailey, G. W. (1989). Bacterial sorption of heavy metals. Applied and Environmental Microbiology, 55, 3143–3149.

    CAS  Google Scholar 

  51. Tobin, J. M., Cooper, D. G., & Neufeld, R. J. (1984). Uptake of metal ion by Rhizopus arrhizus biomass. Applied Microbiology, 47, 821–824.

    CAS  Google Scholar 

  52. Zhou, J. L. (1999). Zn biosorption by Rhizopus arrhizus and other fungi. Applied Microbiology and Biotechnology, 51, 686–693.

    Article  CAS  Google Scholar 

  53. Delorme, T. A., Gagliardi, J. V., Angle, J. S., & Chaney, R. L. (2001). Influence of the zinc hyperaccumulator Thlaspi caerulescens J. & C. Presl. and the nonmetal accumulator Trifolium pratense L. on soil microbial population. Canadian Journal of Microbiology, 67, 190–197.

    Google Scholar 

  54. Goodhew, P. J., Humphreys, J., & Beanland, R. (2001). Electron microscopy and analysis (3rd ed.). UK: Taylor and Francis.

    Google Scholar 

  55. Konstantinidis, K. T., Isaacs, N., Fett, J., Simpson, S., Long, D. T., & Marsh, T. L. (2003). Microbial diversity and resistance to copper in metal-contaminated lake sediment. Microbial Ecology, 45, 191–202.

    Article  CAS  Google Scholar 

  56. He, H., Dong, X., Yang, M., Yang, Q., & Duan, S. (2004). Catalytic inactivation of SARS coronavirus, Escherichia coli and yeast on solid surface. Catalysis Communications, 3, 170–172.

    Article  Google Scholar 

  57. Asku, Z., Kutsal, T., Gun, S., Haciosmanoglu, N., & Gholminejad, M. (1991). Investigation of biosorption of Cu (II), Ni (II) and Cr (VI) ions to activated sludge bacteria. Environmental Technology, 12, 915–921.

    Article  Google Scholar 

  58. Wong, P. K., Lam, K. C., & So, C. M. (1993). Removal and recovery of Cu (II) from industrial effluent by immobilization cells of Pseudomonas putida II-11. Applied Microbiology and Biotechnology, 39, 127–131.

    CAS  Google Scholar 

  59. Zolgharnein, H., Karami, K., Mazaheri Assadi, M., & Dadolahi Sohrab, A. (2010). Investigation of heavy metals biosorption on Pseudomonas aeruginosa strain MCCB 102 isolated from the Persian gulf. Asian Journal of Biotechnology, 2(2), 99–109.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Rajesh Kannan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hemambika, B., Kannan, V.R. Intrinsic Characteristics of Cr6+-Resistant Bacteria Isolated from an Electroplating Industry Polluted Soils for Plant Growth-Promoting Activities. Appl Biochem Biotechnol 167, 1653–1667 (2012). https://doi.org/10.1007/s12010-012-9606-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-012-9606-y

Keywords

Navigation