Skip to main content
Log in

Isolation and Characterization of Oviduct-specific Glycoproteins from Ampulla and Isthmus Parts of Cyclic and Acyclic Buffalo for Studying Differential Microenvironment

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The present study characterized the glycoproteins synthesized by buffalo oviduct. Scanning electron microscopy analyses of the ampullary and isthmic segments of cyclic and acyclic buffaloes showed ultrastructural variations in ciliated and nonciliated cells. Mucosal proteins were extracted by scrapping of different segments of oviduct and, after centrifugation, the remainder tissues were subjected to establish primary cell culture system of oviduct epithelial cells and conditioned media were prepared. Time- and concentration-dependent effects of trypsinization on the establishment of primary monolayer culture showed that 0.25% trypsin for 1–2 min at 37 °C were the optimal conditions. Total protein content in oviductal tissues and conditioned media was quantified and analyzed by SDS-PAGE which showed marked variation in different segments of the oviduct. Western blot analysis revealed five major oviduct-specific glycoproteins (OGPs) in cyclic oviduct (ampulla and isthmus) with Mw 180, 95, 75, 66 and 35 kDa in the oviduct extract and two glycoproteins with Mw 95 and 66 kDa in conditioned media. However, in acyclic oviduct (ampulla and isthmus), three glycoproteins were immunostained with Mw 180, 95 and 66 kDa in the oviduct extract and one glycoprotein with Mw 66 kDa in conditioned media. Indirect Enzyme-Linked Immuno Sorbent Assay (ELISA) results showed significant differences of OGPs in different segments of cyclic and acyclic buffaloes and, thus, indicative of segmental variation in the synthesis and secretion of glycoproteins. Oviductal extract secretes more amounts of OGPs as compared to the conditioned medium. The role of these OGPs may be defined and exploited for influencing the fertilization process and/or subsequent embryonic development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Humblot, P. (2001). Use of pregnancy specific proteins and progesterone assays to monitor pregnancy and determine the timing, frequencies and sources of embryonic mortality in ruminants. Theriogenology, 56, 1417–1433.

    Article  CAS  Google Scholar 

  2. Leese, H. J., Hugentobler, S. A., Gray, S. M., Morris, D. G., Sturmey, R. G., Whitear, S. L., et al. (2008). Female reproductive tract fluids: Composition, mechanism of formation and potential role in the developmental origins of health and disease. Reproduction, Fertility, and Development, 20, 1–8.

    Article  CAS  Google Scholar 

  3. Rodriguez-Martinez, H. (2007). Role of the oviduct in sperm capacitation. Theriogenology, 68(Suppl 1), S138–S146.

    Article  CAS  Google Scholar 

  4. Lloyd, R. E., Romar, R., Matas, C., Gutierrez-Adan, A., Holt, W. V., & Coy, P. (2009). Effects of oviductal fluid on the development, quality and gene expression of porcine blastocyst produced in vitro. Reproduction, 137, 679–687.

    Article  CAS  Google Scholar 

  5. Buhi, W. C., & Alvarez, I. M. (2003). Identification, characterization and localization of three proteins expressed by the porcine oviduct. Theriogenology, 60, 225–238.

    Article  CAS  Google Scholar 

  6. Dickey, J. F., & Hill, J. R. (1974). Histochemistry and electron microscopy of the bovine oviduct. In A. D. Johnson & C. W. Foley (Eds.), The oviduct and its functions (pp. 55–62). New York: Academic Press.

    Google Scholar 

  7. Nayak, R. K., & Ellington, E. F. (1977). Ultrastructural and ultracytochemical cyclic changes in the bovine uterine tube (oviduct) epithelium. American Journal of Veterinary Research, 38, 157–168.

    CAS  Google Scholar 

  8. Abe, H., & Oikawa, T. (1993). Observations by scanning electron microscopy of oviductal epithelial cells from cows at follicular and luteal phases. Anatomical Record, 235, 399–410.

    Article  CAS  Google Scholar 

  9. Hunter, R. H. F., Flechon, B., & Flechon, J. E. (1991). Distribution, morphology and epithelial interactions of bovine spermatozoa in the oviduct before and after ovulation: A scanning electron microscope study. Tissue & Cell, 23, 641–656.

    Article  CAS  Google Scholar 

  10. Gandolfi, F., Brevini, T. A. L., Richardson, L., Brown, C. R., & Moor, R. M. (1989). Characterization of proteins secreted by sheep oviduct epithetial cells and their function in embryonic development. Development, 106, 303–312.

    CAS  Google Scholar 

  11. Leese, H. J. (1988). The formation and function of oviduct fluid. Journal of Reproduction and Fertility, 82, 843–856.

    Article  CAS  Google Scholar 

  12. Kapur, R. P., & Johnson, L. V. (1985). An oviductal fluid glycoprotein associated with ovulated mouse ova and early embryos. Developmental Biology, 112, 89–93.

    Article  CAS  Google Scholar 

  13. Leveille, M. C., Roberts, K. D., Chevalier, S., Chapdelaine, A., & Bleau, G. (1987). Uptake of an oviductal antigen by the hamster zona pellucida. Biology of Reproduction, 36, 227–238.

    Article  CAS  Google Scholar 

  14. Oikawa, T., Sendai, Y., Kuratam, S., & Yanagimachi, R. (1988). A glycoprotein of oviductal origin alters biochemical properties of the zona pellucida of hamster egg. Gamete Research, 19, 113–122.

    Article  CAS  Google Scholar 

  15. Oliphant, G. A., & Ross, P. R. (1982). Demonstration of production and isolation of three sulphated glycoproteins from the rabbit oviduct. Biology of Reproduction, 26, 537–544.

    Article  CAS  Google Scholar 

  16. Sutton, R., Nancarrow, C. D., & Wallace, A. L. C. (1986). Oestrogen and seasonal effects on the production of an oestrus-associated glycoprotein in oviductal fluid of sheep. Journal of Reproduction and Fertility, 77, 645–653.

    Article  CAS  Google Scholar 

  17. Fazleabas, A. T., & Verhage, H. G. (1986). The detection of oviduct-specific proteins in the baboon (Pipo anubis). Biology of Reproduction, 35, 455–462.

    Article  CAS  Google Scholar 

  18. Buhi, W. C., Vallet, J. L., & Bazer, F. W. (1989). De novo synthesis of polypeptides from cyclic and early pregnant porcine oviductal tissue in explant culture. Journal of Experimental Zoology, 252, 79–88.

    Article  CAS  Google Scholar 

  19. Verhage, H. G., Fazleabas, A. T., & Donnelly, K. (1988). The in vitro synthesis and release of proteins by the human oviduct. Endocrinology, 122, 1639–1645.

    Article  CAS  Google Scholar 

  20. Kapur, R. P., & Johnson, L. V. (1988). Ultrastructural evidence that specialized regions of the murine oviduct contribute a glycoprotein to the extracellular matrix of mouse oocytes. Anatomical Record, 221, 720–772.

    Article  CAS  Google Scholar 

  21. Kan, F. W. K., St-Jacques, S., & Bleau, G. (1988). Immunoelectron microscopic localization of an oviductal antigen in hamster anna pellucida by use of a monoclonal antibody. Journal of Histochemistry and Cytochemistry, 36, 1441–1444.

    Article  CAS  Google Scholar 

  22. Boice, M. L., McCarthy, T. J., Fazleabas, A. T., & Verhage, H. G. (1989). Localization of oviduct glycoproteins within zonae pellucidae of baboon (Papio anubis) ovulated ova and early embroys. Biology of Reproduction, 40(suppl 1), 89A.

    Google Scholar 

  23. Bavister, B. D. (1988). Role of oviductal secretions in embryonic growth in vivo and in vitro. Theriogenology, 29, 143–154.

    Article  Google Scholar 

  24. Kane, M. T. (1975). Inhibition of zona shedding of rabbit blastocysts in culture by the presence of a mucin coat. Journal of Reproduction and Fertility, 44, 539–542.

    Article  CAS  Google Scholar 

  25. Brown, C. R., & Cheng, W. K. T. (1986). Changes in composition of the porcine zona pellucida during development of the oocyte to the 2- to 4-cell embryo. Journal of Embryology and Experimental Morphology, 92, 183–191.

    CAS  Google Scholar 

  26. Kapur, R. P., & Johnson, L. V. (1986). Selective sequestration of an oviductal fluid glycoprotein in the perivitelline space of mouse oocytes and embryos. The Journal of Experimental Zoology, 238, 249–260.

    Article  CAS  Google Scholar 

  27. Satoh, T., Kobayashi, K., Yamashita, S., et al. (1994). Tissue inhibitor of metalloproteinases (TIMP-1) produced by granulosa and oviduct cells enhances in vitro development of bovine embryo. Biology of Reproduction, 50, 835–844.

    Article  CAS  Google Scholar 

  28. King, R. S., & Killian, G. J. (1994). Purification of bovine estrus-associated protein and localization of binding on sperm. Biology of Reproduction, 51, 34–42.

    Article  Google Scholar 

  29. Ijaz, A., Lambert, R. D., & Sirard, M. A. (1994). In vitro-cultured bovine granulosa and oviductal cells secrete sperm motility maintaining factor(s). Molecular Reproduction and Development, 37, 54–60.

    Article  CAS  Google Scholar 

  30. Abe, H., & Oikawa, T. (1992). Examination by scanning electron microscopy of oviductal epithelium of the prolific Chinese Meishan pig at follicular and luteal phases. Anatomical Record, 233, 399–408.

    Article  CAS  Google Scholar 

  31. Eyestone, W. H., & First, N. L. (1989). Co-culture of early cattle embryos to the blastocyst stage with oviducal tissue or in conditioned medium. Journal of Reproduction and Fertility, 85, 715–720.

    Article  CAS  Google Scholar 

  32. Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with the folin phenol reagent. Journal of Biological Chemistry, 193, 265–275.

    CAS  Google Scholar 

  33. Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227, 680–685.

    Article  CAS  Google Scholar 

  34. Towbin, H., Stachelin, T., & Gordon, J. (1979). Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: Procedure and some applications. Proceedings of the National Academy of Sciences USA, 76, 4350–4435.

    Article  CAS  Google Scholar 

  35. Rumery, R. E., Gaddum-Ross, E. P., Blandau, R. J., & Odor, D. L. (1978). Cyclic changes in ciliation of the oviductal epithelium in the pigtailed macaque (Macaca nemestrina). The American Journal of Anatomy, 153, 345–366.

    Article  CAS  Google Scholar 

  36. Hole, J. W., & Koos, K. A. (1994). Human anatomy (2nd ed., p. 662). Dubuque: Wm.C. Brown Communications. Inc.

    Google Scholar 

  37. Verhange, H. G., & Jaffe, R. C. (1986). Hormonal control of the mammalian oviduct: Morphological features and the steroid receptor systems. In A. M. Siegler (Ed.), The Fallopian Tube (pp. 107–117). New York: Futura.

    Google Scholar 

  38. Stewart, G. J., Wang, Y., & Niewiarowski, S. (1995). Methylcellulose protects the ability of anchorage dependent cells to adhere following isolation and holding in suspension. Biotechniques, 19, 598–604.

    CAS  Google Scholar 

  39. Cruz, H. J., Yanase, Y., & Carrondo, M. J. T. (1997). Cell dislodging methods under serum-free conditions. Applied Microbiology and Biotechnology, 47, 482–488.

    Article  CAS  Google Scholar 

  40. Umegaki, R., Masahiro, K. O., & Taya, M. (2004). Assessment of cell detachment and growth potential of human keratinocyte based on observed changes in individual cell area during trypsinization. Biochemical Engineering Journal, 17, 49–55.

    Article  CAS  Google Scholar 

  41. Lopes, A. A. B., Peranovich, T. M. S., Maeda, N. Y., & Bydlowski, S. P. (2001). Differential effects of enzymatic treatments on the storage and secretion of von Willebrand factor by human endothelial cells. Thrombosis Research, 101, 291–297.

    Article  CAS  Google Scholar 

  42. Tsai, W. B., & Wang, M. C. (2005). Effect of an avidin–biotin binding system on chondrocyte adhesion, growth and gene expression. Biomaterials, 26, 3141–3151.

    Article  CAS  Google Scholar 

  43. Lepsch, L. B., Munhoz, C. D., Kawamoto, E. M., Yshii, L. M., Lima, L. S., Curi-Boaventura, M. F., et al. (2009). Cocaine induces cell death and activates the transcription nuclear factor kappa-b in pc12 cells. Molecular Brain, 2, 3. doi:10.1186/1756-6606-2-3.

    Article  Google Scholar 

  44. Bolwell, G. P. (1986). Significance of a common epitope of plant and animal endomembranes. Journal of Cell Science, 82, 187–201.

    CAS  Google Scholar 

  45. Ouhibi, N., Menezo, Y., Benet, G., & Nicollet, B. (1989). Culture of epithelial cells derived from the oviduct of different species. Human Reproduction, 4, 229–235.

    CAS  Google Scholar 

  46. Hoshi, H., Onodera, M., & Oikawa, T. (1992). Isolation, cell characterization and growth regulation of bovine oviduct epithelial cells in vitro. Tissue Culture and Research Communications, 11, 5–11.

    Google Scholar 

  47. Joshi, M. S. (1988). Isolation, cell culture and immunocytoehemical characterization of oviduct epithelial cells of the cow. Journal of Reproduction and Fertility, 83, 249–261.

    Article  CAS  Google Scholar 

  48. Malayer, J. R., Hansen, P. J., & Buhi, W. C. (1988). Secretion of proteins by cultured bovine oviducts collected from estrus through early diestrus. Journal of Experimental Zoology, 248, 345–353.

    Article  CAS  Google Scholar 

  49. Boice, M. L., Geisert, R. D., Blair, R. M., & Verhage, H. G. (1990). Identification and characterization of bovine oviductal glycoproteins synthesized at estrus. Biology of Reproduction, 43, 457–465.

    Article  CAS  Google Scholar 

  50. Wegner, C. C., & Killian, G. J. (1992). Origin of oestrus-associated glycoproteins in bovine oviductal fluid. Journal of Reproduction and Fertility, 95, 841–854.

    Article  CAS  Google Scholar 

  51. Joshi, M. S. (1991). Growth and differentiation of the cultured secretory cells of the cow oviduct on reconstituted basement membrane. The Journal of Experimental Zoology, 260, 229–238.

    Article  CAS  Google Scholar 

  52. Gerena, R. L., & Killian, G. J. (1990). Electrophoretic characterization of proteins in oviduct fluid of cows during the estrous cycle. The Journal of Experimental Zoology, 256, 113–120.

    Article  CAS  Google Scholar 

  53. Robitaille, G., St Jacques, S., Portier, M., & Bleau, G. (1988). Characterization of an oviductal glycoprotein associated with the ovulated hamster oocyte. Biology of Reproduction, 38, 687–694.

    Article  CAS  Google Scholar 

  54. Barr, S. H., & Oliphant, G. (1981). Sulphate incorporation into macromolecules produced by cultured oviductal epithelium. Biology of Reproduction, 24, 852–858.

    Article  CAS  Google Scholar 

  55. Wagh, P. V., & Lippes, J. (1989). Human oviductal fluid proteins III. Identification and partial purification. Fertility and Sterility, 51, 81–88.

    CAS  Google Scholar 

  56. Parrish, J. J., Susko-Parrish, J. L., Handrow, R. R., Sims, M. M., & First, N. L. (1989). Capacitation of bovine spermatozoa by oviduct fluid. Biology of Reproduction, 40, 1020–1025.

    Article  CAS  Google Scholar 

  57. Araki, Y., Kurata, S., Oikawa, T., Yamashita, T., Hiroi, M., Naiki, M., et al. (1987). A monoclonal antibody reacting with the zona pellucida of the oviductal egg but not with that of the ovarian egg of the golden hamster. Journal of Reproduction and lmmunology, 11, 193–208.

    Article  CAS  Google Scholar 

  58. Hyde, B. A., & Black, D. L. (1986). Synthesis and secretion of sulphated glycoproteins by rabbit oviduct explants in vitro. Journal of Reproduction and Fertility, 78, 83–91.

    Article  CAS  Google Scholar 

  59. Abe, H., Satoh, T., & Hoshi, H. (1998). Primary modulation by oestradiol of the production of an oviduct-specific glycoprotein by the epithelial cells in the oviduct of newborn golden hamsters. Journal of Reproduction and Fertility, 112, 157–163.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors would like to thank Dean, College of Basic Sciences and Humanities and Dean, College of Postgraduate Studies, G.B. Pant University of Agriculture and Technology, Pantnagar for providing necessary facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anil Kumar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singh, S., Prasad, S., Gupta, H.P. et al. Isolation and Characterization of Oviduct-specific Glycoproteins from Ampulla and Isthmus Parts of Cyclic and Acyclic Buffalo for Studying Differential Microenvironment. Appl Biochem Biotechnol 166, 1814–1830 (2012). https://doi.org/10.1007/s12010-012-9599-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-012-9599-6

Keywords

Navigation