Skip to main content
Log in

p-Nitrophenol Biodegradation by Aerobic Microbial Granules

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Mixed microbial consortia in the form of aerobic microbial granules (AMG) capable of xenobiotic degradation can be developed from activated sludge or by adaptation of microbial granules pre-grown on labile carbon sources. Both of these approaches were investigated for the cultivation of AMG capable of p-nitrophenol (PNP) biodegradation. Attempts to cultivate AMG from activated sludge using PNP as the sole carbon source were not successful due to poor microbial growth and washout of the inoculated activated sludge. As part of the second approach, parallel sequencing batch reactors (SBRs) were inoculated with pre-grown AMG and operated by feeding both acetate and PNP together (RA), PNP alone (RB) or acetate alone (RC). Acetate/PNP mineralization and nitrification were monitored in the three SBRs. PNP biodegradation was quickly established in both RA and RB. PNP removal rates were found to be 47 and 55 mg g VSS−1 h−1 in RA and RB, respectively. PNP biodegradation during the SBR cycle consisted of distinct lag, exponential and deceleration phases. However, with higher concentrations of PNP (>50 mg l−1), disintegration of granules was observed in RA and RB. When PNP was the sole carbon source, it inhibited the development of aerobic granules from activated sludge and caused disintegration of pre-cultivated aerobic granules. When PNP was the co-substrate along with acetate, the structural and functional integrity (including nitrification) of the granular sludge was maintained. This report highlights the importance of a labile co-substrate for maintaining the physical and functional integrity of granular sludge, when used for toxic waste degradation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Trapido, M., & Kallas, J. (2000). Environmental Technology, 21, 799–808.

    Article  CAS  Google Scholar 

  2. USEPA (2007) No. DW-89939822-01-0.

  3. Eckenfelder, W. W. (1989). Industrial water pollution control. New York: McGraw-Hill.

    Google Scholar 

  4. Spain, J. C., & Gibson, D. T. (1991). Applied and Environmental Microbiology, 57, 812–819.

    CAS  Google Scholar 

  5. Xing, X., Inoue, T., Tanji, Y., & Unno, H. (1999). Journal of Bioscience and Bioengineering, 87, 372–377.

    Article  CAS  Google Scholar 

  6. Bhatti, Z. I., Toda, H., & Furukawa, K. (2002). Water Research, 36, 1135–1142.

    Article  CAS  Google Scholar 

  7. Tomei, M. C., Annesini, M. C., Luberti, R., Cento, G., & Senia, A. (2003). Water Research, 37, 3803–3814.

    Article  CAS  Google Scholar 

  8. Tomei, M. C., & Annesini, M. C. (2005). Environmental Science & Technology, 39, 5059–5065.

    Article  CAS  Google Scholar 

  9. Yi, S., Zhuang, W., Wu, B., Tay, S. T. L., & Tay, J. H. (2006). Environmental Science & Technology, 40, 2396–2401.

    Article  CAS  Google Scholar 

  10. Di Iaconi, C., Ramadori, R., Lopez, A., & Passino, R. (2007). Industrial and Engineering Chemistry Research, 46, 6661–6665.

    Article  Google Scholar 

  11. Nancharaiah, Y. V., Joshi, H. M., Mohan, T. V. K., Venugopalan, V. P., & Narasimhan, S. V. (2006). Current Science, 91, 503–509.

    CAS  Google Scholar 

  12. Nancharaiah, Y. V., Schwarzenbeck, N., Mohan, T. V., Narasimhan, S. V., Wilderer, P. A., & Venugopalan, V. P. (2006). Water Research, 40, 1539–1546.

    Article  CAS  Google Scholar 

  13. Nancharaiah, Y. V., Joshi, H. M., Hausner, M., & Venugopalan, V. P. (2008). Chemosphere, 71, 30–35.

    Article  CAS  Google Scholar 

  14. Yarlagadda, V. N., Kadali, R., Sharma, N., Sekar, R., & Vayalam Purath, V. (2011). Applied Biochemistry and Biotechnology. doi:10.1007/s12010-011-9509-3.

  15. Adav, S. S., Lee, D. J., Show, K. Y., & Tay, J. H. (2008). Biotechnology Advances, 26, 411–423.

    Article  CAS  Google Scholar 

  16. Xiong, Y., & Liu, Y. (2010). Applied Microbiology and Biotechnology, 86, 825–837.

    Article  CAS  Google Scholar 

  17. Saville, R. M., Rakshe, S., Haagensen, J. A. J., Shukla, S., & Spormann, A. M. (2011). Journal of Bacteriology, 193, 3257–3264.

    Article  CAS  Google Scholar 

  18. Ray, P., Oubelli, M. A., & Loser, C. (1999). Applied Microbiology and Biotechnology, 51, 284–290.

    Article  CAS  Google Scholar 

  19. USEPA (1979). 353.3. U.S.

  20. APHA. (1998). Standard methods for the examination of water and wastewater. Washington, DC: APHA.

    Google Scholar 

  21. Lane, D. J. (1991). 16S/23S rRNA sequencing. In E. Stackbrandth & M. Goodfellow (Eds.), Nucleic acid techniques in Bacterial systems (pp. 115–175). Chichester, UK: Wiley.

    Google Scholar 

  22. Muyzer, G., de Waal, E. C., & Uitterlinden, A. G. (1993). Environmental Microbiology, 59, 695–700.

    CAS  Google Scholar 

  23. Low, E. W., Chase, H. A., Milner, M. G., & Curtis, T. P. (2000). Water Research, 34(12), 3204–3212.

    Article  CAS  Google Scholar 

  24. O’Toole, G., Kaplan, H. B., & Kolter, R. (2000). Annual Review of Microbiology, 54, 49–79.

    Article  Google Scholar 

Download references

Acknowledgements

SE is thankful to the University Grants Commission (UGC), Government of India, for providing Junior Research fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vayalam P. Venugopalan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Suja, E., Nancharaiah, Y.V. & Venugopalan, V.P. p-Nitrophenol Biodegradation by Aerobic Microbial Granules. Appl Biochem Biotechnol 167, 1569–1577 (2012). https://doi.org/10.1007/s12010-012-9594-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-012-9594-y

Keywords

Navigation