Skip to main content
Log in

Decolorization and Biodegradation of Rubine GFL by Microbial Consortium GG-BL in Sequential Aerobic/Microaerophilic Process

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

This study represents the development of a new batch method by consortium GG-BL using two microbial cultures viz., Galactomyces geotrichum MTCC 1360 and Brevibacillus laterosporus MTCC 2298, by varying environmental conditions for the decolorization and biodegradation of Rubine GFL. Consortium was found to give better decolorization and degradation of Rubine GFL as compared to the individual microorganism at aerobic/microaerophilic process. The consortial metabolic activity of these strains lead to 100% decolorization of Rubine GFL (50 mg/L) within 30 h with significant reduction in chemical oxygen demand (79%) and total organic carbon (68%). Induction in the activities of laccase, veratryl alcohol oxidase, tyrosinase, azo reductase, and riboflavin reductase suggested their role in the decolorization process. Nondenaturing polyacrylamide gel electrophoresis analysis showed differential induction pattern of oxidoreductive enzymes during decolorization of the dye at different incubation temperatures. The degradation of Rubine GFL into different metabolites by individual organism and in consortium was confirmed using high performance thin layer chromatography, high performance liquid chromatography, Fourier transform infrared spectroscopy, and gas chromatography-mass spectroscopy analysis. Phytotoxicity studies revealed nontoxic nature of the metabolites of Rubine GFL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Tony, B. D., Goyal, D., & Khanna, S. (2009). International Biodeterioration & Biodegradation, 63, 462–469.

    Article  CAS  Google Scholar 

  2. Sponza, D. T., & Isik, M. (2005). Process Biochemistry, 40, 2735–2744.

    Article  CAS  Google Scholar 

  3. Supaka, N., Juntongjin, K., Damronglerd, S., Delia, M., & Strehaiano, P. (2004). Chemical Engineering Journal, 99, 169–176.

    Article  CAS  Google Scholar 

  4. Banat, I. M., Nigam, P., Singh, D., & Merchant, R. (1996). Bioresource Technology, 58, 217–227.

    Article  CAS  Google Scholar 

  5. Tamboli, D. P., Kagalkar, A. N., Jadhav, M. U., Jadhav, J. P., & Govindwar, S. P. (2010). Bioresource Technology, 101, 2421–2427.

    Article  CAS  Google Scholar 

  6. Amoozegar, M. A., Hajighasemi, M., Hamedi, J., Asad, S., & Ventosa, A. (2011). Annals of Microbiology, 61, 217–230.

    Article  CAS  Google Scholar 

  7. Saratale, R. G., Saratale, G. D., Chang, J. S., & Govindwar, S. P. (2011). Journal of the Taiwan Institute of Chemical Engineers, 42, 138–157.

    Article  CAS  Google Scholar 

  8. Farabegoli, G., Chiavola, A., Rolle, E., & Naso, M. (2010). Biochemical Engineering Journal, 52, 220–226.

    Article  CAS  Google Scholar 

  9. Senan, R. C., & Abraham, T. E. (2004). Biodegradation, 15, 275–280.

    Article  CAS  Google Scholar 

  10. Sponza, D. T., & Isik, M. (2002). Enzyme and Microbial Technology, 31, 102–110.

    Article  CAS  Google Scholar 

  11. Frijters, C. T. M. J., Vos, R. H., Scheffer, G., & Mulder, R. (2006). Water Research, 40, 1249–1257.

    Article  CAS  Google Scholar 

  12. Moosvi, S., & Madamwar, D. (2007). Bioresource Technology, 98, 3384–3392.

    Article  CAS  Google Scholar 

  13. Albuquerque, M. G. E., Lopes, A. T., Serralheiro, M. L., Novais, J. M., & Pinheiro, H. M. (2005). Enzyme and Microbial Technology, 36, 790–799.

    Article  CAS  Google Scholar 

  14. Isik, M., & Sponza, D. T. (2008). Separation and Purification Technology, 60, 64–72.

    Article  CAS  Google Scholar 

  15. You, S., Damodar, R. A., & Hou, S. (2010). Journal of Hazardous Materials, 177, 1112–1118.

    Article  CAS  Google Scholar 

  16. Li, Z., Zhang, X., Lin, J., Han, S., & Lei, L. (2010). Bioresource Technology, 101, 4440–4445.

    Article  CAS  Google Scholar 

  17. Phugare, S. S., Kalyani, D. C., Patil, A. V., & Jadhav, J. P. (2011). Journal of Hazardous Materials, 186, 713–723.

    Article  CAS  Google Scholar 

  18. APHA-AWWA-WEF. (2005). Washington, DC: American Public Health Association.

  19. Waghmode, T. R., Kurade, M. B., & Govindwar, S. P. (2011). International Biodeterioration & Biodegradation, 65, 479–486.

    Article  CAS  Google Scholar 

  20. Tamboli, D. P., Kurade, M. B., Waghmode, T. R., Joshi, S. M., & Govindwar, S. P. (2010). Journal of Hazardous Materials, 182, 169–176.

    Article  CAS  Google Scholar 

  21. Kandaswami, C., & Vaidyanathan, C. S. (1973). Journal of Biological Chemistry, 248, 4035–4039.

    CAS  Google Scholar 

  22. Telke, A. A., Joshi, S. M., Jadhav, S. U., Tamboli, D. P., & Govindwar, S. P. (2010). Biodegradation, 21, 283–296.

    Article  CAS  Google Scholar 

  23. Saratale, R. G., Saratale, G. D., Chang, J. S., & Govindwar, S. P. (2009). Journal of Hazardous Materials, 166, 1421–1428.

    Article  CAS  Google Scholar 

  24. Chen, K. C., Wu, J. Y., Liou, D. J., & Hwang, S. C. J. (2003). Journal of Biotechnology, 101, 57–68.

    Article  CAS  Google Scholar 

  25. Jadhav, U. U., Dawkar, V. V., Tamboli, D. P., & Govindwar, S. P. (2009). Bioprocess Engineering, 14, 369–376.

    Article  CAS  Google Scholar 

  26. Phugare, S. S., Waghmare, S. R., & Jadhav, J. P. (2011). World Journal of Microbiology and Biotechnology, 27, 2415–2423.

    Google Scholar 

  27. Parshetti, G. K., Telke, A. A., Kalyani, D. C., & Govindwar, S. P. (2010). Journal of Hazardous Materials, 176, 503–509.

    Article  CAS  Google Scholar 

  28. Jadhav, S. U., Jadhav, U. U., Dawkar, V. V., & Govindwar, S. P. (2008). Biotechnology and Bioprocess Engineering, 13, 1–8.

    Article  Google Scholar 

  29. Patil, P. S., Phugare, S. S., Jadhav, S. B., & Jadhav, J. P. (2010). Journal of Hazardous Materials, 181, 263–270.

    Article  CAS  Google Scholar 

  30. Kabra, A. N., Khandare, R. V., Waghmode, T. R., & Govindwar, S. P. (2011). Journal of Hazardous Materials, 190, 424–431.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Mr. T. R. Waghmode and M. B. Kurade wish to thank the Department of Biotechnology, New Delhi, India, for providing Junior Research Fellowship. Dr. Harshad Lade wishes to thank the University Grant commission, New Delhi, India, for providing Dr. D. S. Kothari postdoctoral fellowship. Prof. S. P. Govindwar wishes to thank the Department of Biotechnology, New Delhi, for financial support to this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjay P. Govindwar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Waghmode, T.R., Kurade, M.B., Lade, H.S. et al. Decolorization and Biodegradation of Rubine GFL by Microbial Consortium GG-BL in Sequential Aerobic/Microaerophilic Process. Appl Biochem Biotechnol 167, 1578–1594 (2012). https://doi.org/10.1007/s12010-012-9585-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-012-9585-z

Keywords

Navigation