Skip to main content
Log in

Decomposition of Insoluble and Hard-to-Degrade Animal Proteins by Enzyme E77 and Its Potential Applications

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Insoluble and hard-to-degrade animal proteins are group of troublesome proteins, such as collagen, elastin, keratin, and prion proteins that are largely generated by the meat industry and ultimately converted to industrial wastes. We analyzed the ability of the abnormal prion protein-degrading enzyme E77 to degrade insoluble and hard-to-degrade animal proteins including keratin, collagen, and elastin. The results indicate that E77 has a much higher keratinolytic activity than proteinase K and subtilisin. Maximal E77 keratinolytic activity was observed at pH 12.0 and 65 °C. E77 was also adsorbed by keratin in a pH-independent manner. E77 showed lower collagenolytic and elastinolytic specificities than proteinase K and subtilisin. Moreover, E77 treatment did not damage collagens in ovine small intestines but did almost completely remove the muscles. We consider that E77 has the potential ability for application in the processing of animal feedstuffs and sausages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Deydier, E., Guilet, R., Cren, S., Pereas, V., Mouchet, F., & Gauthier, L. (2007). Evaluation of meat and bone meal combustion residue as lead immobilizing material for in situ remediation of polluted aqueous solutions and soils: “Chemical and ecotoxicological studies”. Journal of Hazardous Materials, 19, 227–236.

    Article  Google Scholar 

  2. Suzuki, Y., Tsujimoto, Y., Matsui, H., & Watanabe, K. (2006). Decomposition of extremely hard-to-degrade animal proteins by thermophilic bacteria. Journal of Bioscience and Bioengineering, 102, 73–81.

    Article  CAS  Google Scholar 

  3. Hui, Z., Doi, H., Kanouchi, H., Matsuura, Y., Mohri, S., Nonomura, Y., et al. (2004). Alkaline serine protease produced by Streptomyces sp. degrades PrPSc. Biochemical and Biophysical Research Communications, 321, 45–50.

    Article  CAS  Google Scholar 

  4. Yamamura, S., Morita, Y., Hasan, Q., Yokoyama, K., & Tamiya, E. (2002). Keratin degradation: A cooperative action of two enzymes from Stenotrophomonas sp. Biochemical and Biophysical Research Communications, 294, 1138–1143.

    Article  CAS  Google Scholar 

  5. Mitsuiki, S., Hui, Z., Matsumoto, D., Sakai, M., Moriyama, Y., Furukawa, K., et al. (2006). Degradation of PrPSc by keratinolytic protease from Nocardiopsis sp. TOA-1. Bioscience, Biotechnology, and Biochemistry, 70, 1246–1248.

    Article  CAS  Google Scholar 

  6. Tatineni, R., Doddapaneni, K. K., Potumarthi, R. C., Vellanki, R. N., Kandathil, M. T., Kolli, N., et al. (2008). Purification and characterization of an alkaline keratinase from Streptomyces sp. Bioresource Technology, 99, 1596–1602.

    Article  CAS  Google Scholar 

  7. Xie, F., Chao, Y., Yang, X., Yang, J., Xue, Z., Luo, Y., et al. (2010). Purification and characterization of four keratinases produced by Streptomyces sp. strain 16 in native human foot skin medium. Bioresource Technology, 101, 344–350.

    Article  Google Scholar 

  8. Vermelho, A. B., Mazotto, A. M., de Melo, A. C., Vieira, F. H., Duarte, T. R., Macrae, A., et al. (2010). Identification of a Candida parapsilosis strain producing extracellular serine peptidase with keratinolytic activity. Mycopathologia, 169, 57–65.

    Article  CAS  Google Scholar 

  9. Linsenmayer, T. F. (1991). In Cell Biology of Extracellular Matrix, vol. 1: Collagen. (Linwenmayer, T. F., ed), (pp. 7–40). New York: Plenum.

  10. Nimni, M. E. (1983). Collagen: Structure, function, and metabolism in normal and fibrotic tissues. Seminars in Arthritis and Rheumatism, 13, 1–86.

    Article  CAS  Google Scholar 

  11. Mitsuiki, S., Sakai, M., Moriyama, Y., Goto, M., & Furukawa, K. (2002). Purification and some properties of a keratinolytic enzyme from an alkaliphilic Nocardiopsis sp. TOA-1. Bioscience, Biotechnology, and Biochemistry, 66, 164–167.

    Article  CAS  Google Scholar 

  12. Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry, 193, 265–275.

    CAS  Google Scholar 

  13. Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227, 680–685.

    Article  CAS  Google Scholar 

  14. Hagiwara, B., Matsubara, H., Nakai, M., & Okunuki, K. (1985). Crystalline bacterial proteinase: I. Preparation of crystalline proteinase of Bacillus subtilis. Journal of Biochemistry, 45, 185–194.

    Google Scholar 

  15. Heidenhain, M. (1905). Über die Anwendung des Azokarmins und der Chromotrope. Zeitschrift für Wissenschaftliche Mikroskopie und für Mikroskopische Technik, 22, 337–343.

    Google Scholar 

  16. Prusiner, S. B. (1982). Novel proteinaceous infectious particles cause scrapie. Science, 216, 136–144.

    Article  CAS  Google Scholar 

  17. Taylor, D. M. (1999). Inactivation of prions by physical and chemical means. Journal of Hospital Infection, 43(Supplement), S69–S76.

    Article  Google Scholar 

  18. Mitsuiki, S., Ichikawa, M., Oka, T., Moriyama, Y., Sakai, M., Sameshima, Y., et al. (2004). Molecular characterization of a keratinolytic enzyme from an alkaliphilic Nocaridopsis sp. TOA-1. Enzyme and Microbial Technology, 34, 482–489.

    Article  CAS  Google Scholar 

  19. Goto, M., Semimaru, T., Furukawa, K., & Hayashida, S. (1994). Analysis of the raw starch-binding domain by mutation of a glucoamylases from Aspergillus awamori var. kawachi expressed in Saccharomyces cerevisiae. Applied and Environmental Microbiology, 60, 3926–3930.

    CAS  Google Scholar 

  20. Medve, J., Stahlberg, J., & Tjemeld, F. (1997). Isotherms for adsorption of cellobiohydrolase I and II from Trichoderma reesei on microcrystalline cellulose. Applied Biochemistry and Biotechnology, 66, 39–56.

    Article  CAS  Google Scholar 

  21. Cazemier, A. E., Verdoes, J. C., van Ooyen, A. J., Op den Camp, H. J. (1999). Molecular and biochemical characterization of two xylanase-coding genes from Cellulomonas pachnodae. Applied and Environmental Microbiology, 65, 4099–4107.

    Google Scholar 

  22. Folders, J., Algra, J., Roelofs, M. S., Van Loon, L. C., Tommassen, J., & Bitter, W. (2001). Characterization of Pseudomonas aeruginosa chitinase, a gradually secreted protein. Journal of Bacteriology, 183, 7044–7052.

    Article  CAS  Google Scholar 

  23. Dalev, P., Ivanov, I., & Liubomirova, A. (1997). Enzymic modification of feather keratin hydrolyzates with lysine aimed at increasing the biological value. Journal of the Science of Food and Agriculture, 73, 242–244.

    Article  CAS  Google Scholar 

  24. Odetallah, N. H., Wang, J. J., Garlich, J. D., & Shih, J. C. (2003). Keratinase in starter diets improves growth of broiler chicks. Poultry Science, 82, 664–670.

    CAS  Google Scholar 

  25. Ignatova, Z., Gousterova, A., Spassov, G., & Nedkov, P. (1999). Isolation and partial characterization of extracellular keratinase from a wool degrading thermophilic actinomycete strain Thermoactinomyces candidus. Canadian Journal of Microbiology, 45, 217–222.

    CAS  Google Scholar 

  26. Friedrich, A. B., & Antranikian, G. (1996). Keratin degradation by Fervidobacterium pennivorans, a novel thermophilic anaerobic species of the order Thermotogales. Applied and Environmental Microbiology, 62, 2875–2882.

    CAS  Google Scholar 

  27. Nam, G. W., Lee, D. W., Lee, H. S., Lee, N. J., Kim, B. C., Choe, E. A., et al. (2002). Native-feather degradation by Fervidobacterium islandicum AW-1, a newly isolated keratinase-producing thermophilic anaerobe. Archives of Microbiology, 178, 538–547.

    Article  CAS  Google Scholar 

  28. Riessen, S., & Antranikian, G. (2001). Isolation of Thermoanaerobacter keratinophilus sp. nov., a novel thermophilic, anaerobic bacterium with keratinolytic activity. Extremophiles, 5, 399–408.

    Article  CAS  Google Scholar 

  29. Dozie, I. N. S., Okeke, C. N., & Unaeze, N. C. (1994). A thermostable, alkaline-active keratinolytic proteinase from Chrysosporium keratinophilum. World Journal of Microbiology and Biotechnology, 10, 563–567.

    Article  CAS  Google Scholar 

  30. Takami, H., Nakamura, S., Aono, R., & Horikoshi, K. (1992). Degradation of human hair by a thermostable alkaline protease from alkalophilic Bacillus sp. no. AH-101. Bioscience, Biotechnology, and Biochemistry, 56, 1667–1969.

    Article  CAS  Google Scholar 

  31. Sugiyama, S., Hirota, A., Okada, C., Yorita, T., Sato, K., & Ohtsuki, K. (2005). Effect of kiwifruit juice on beef collagen. Journal of Nutritional Science and Vitaminology (Tokyo), 51, 27–33.

    Article  CAS  Google Scholar 

  32. Clamp, A. R., & Jayson, G. C. (2005). The clinical potential of antiangiogenic fragments of extracellular matrix proteins. British Journal of Cancer, 93, 967–972.

    Article  CAS  Google Scholar 

  33. Tsuruoka, N., Isono, Y., Shida, O., Hemmi, H., Nakayama, T., Nishino, T. (2003) Alicyclobacillus sendaiensis sp. nov., a novel acidophilic, slightly thermophilic species isolated from soil in Sendai, Japan. International Journal Systematic and Evolutionary Microbiology, 53, 1081–1084.

    Google Scholar 

  34. Okamoto, M., Yonejima, Y., Tsujimoto, Y., Suzuki, Y., & Watanabe, K. (2001). A thermostable collagenolytic protease with a very large molecular mass produced by thermophilic Bacillus sp. strain MO-1. Applied Microbiology and Biotechnology, 57, 103–108.

    Article  CAS  Google Scholar 

  35. Tsuruoka, N., Nakayama, T., Ashida, M., Hemmi, H., Nakao, M., Minakata, H., et al. (2003). Collagenolytic serine-carboxyl proteinase from Alicyclobacillus sendaiensis strain NTSP-1: Purification, characterization, gene cloning and heterologous expression. Applied and Environmental Microbiology, 69, 162–169.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Grants-in-Aid for Scientific Research (20580106), Japan, the National Natural Science Foundation of China (31060302), and the Natural Science Foundation of Yunnan Province, PR China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shinji Mitsuiki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, H., Mitsuiki, S., Takasugi, M. et al. Decomposition of Insoluble and Hard-to-Degrade Animal Proteins by Enzyme E77 and Its Potential Applications. Appl Biochem Biotechnol 166, 1758–1768 (2012). https://doi.org/10.1007/s12010-012-9581-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-012-9581-3

Keywords

Navigation