Skip to main content
Log in

Organic Solvent Tolerance of an α-Amylase from Haloalkaliphilic Bacteria as a Function of pH, Temperature, and Salt Concentrations

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

A haloalkaliphilic bacterium was isolated from salt-enriched soil of Mithapur, Gujarat (India) and identified as Bacillus agaradhaerens Mi-10-62 based on 16S rRNA sequence analysis (NCBI gene bank accession, GQ121032). The bacterium was studied for its α-amylase characteristic in the presence of organic solvents. The enzyme was quite active and it retained considerable activity in 30% (v/v) organic solvents, dodecane, decane, heptane, n-hexane, methanol, and propanol. At lower concentrations of solvents, the catalysis was quite comparable to control. Enzyme catalysis at wide range of alkanes and alcohol was an interesting finding of the study. Mi-10-62 amylase retained activity over a broader alkaline pH range, with the optimal pH at 10–11. Two molars of salt was optimum for catalysis in the presence of most of the tested solvents, though the enzyme retained significant activity even at 4 M salt. With dodecane, the optimum temperature shifted from 50 °C to 60 °C, while the enzyme was active up to 80 °C. Over all, the present study focused on the effect of organic solvents on an extracellular α-amylase from haloalkaliphilic bacteria under varying conditions of pH, temperature, and salt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bonete, M. J., Camachmo, L., & Cadenaes. (1987). International Journal of Biochemistry, 19, 1149–1155.

    Article  CAS  Google Scholar 

  2. Bonnete, F., Madern, D., & Zaccai, G. (1994). Journal of Molecular Biology, 244, 436–447.

    Article  CAS  Google Scholar 

  3. Bernfeld, P. (1951). Interscience Publ., NY, 379.

  4. Coronado, M. J., Carmen, V., Mellado, E., Tegos, G., Drainas, C., Nieto, J. J., et al. (2000). Microbiology, 146, 861–868.

    CAS  Google Scholar 

  5. Costa, D. A., Santos, M. S., & Galinski, E. A. (1998). Advances in Biochemical Engineering/Biotechnology, 61, 117–153.

    Article  Google Scholar 

  6. Camacho, M. L., Brown, R. A., Bonete, M. J., Danson, M. J., & Hough, D. W. (1995). Isocitrate dehydrogenases from Haloferax volcanii and Sulfolobus solfataricus: enzyme purification, characterization and N-terminal sequence. FEMS Microbiology Letters, 134(1), 85–90.

    Article  CAS  Google Scholar 

  7. Danson, M. J., & Hough, D. W. (1997). Biochemistry and Physiology, 117A, 307–312.

    Article  CAS  Google Scholar 

  8. Dodia, M. S., Bhimani, H. G., Rawal, C. M., Joshi, R. H., & Singh, S. P. (2008). Bioresource Technology, 99, 6223–6227.

    Article  CAS  Google Scholar 

  9. Dodia, M. S., Rawal, C. M., Bhimani, H. G., Joshi, R. H., Khare, S. K., & Singh, S. P. (2008). Journal of Industrial Microbiology and Biotechnology, 35(2), 121–132.

    Article  CAS  Google Scholar 

  10. Dym, O., Mevarech, M., & Sussman, J. L. (1995). Science, 267, 1344–1346.

    Article  CAS  Google Scholar 

  11. Eisenberg, H., Mevarech, M., & Zaccai, G. (1992). Advances in Protein Chemistry, 43, 1–62.

    Article  CAS  Google Scholar 

  12. Eichler, J. (2001). Biotechnology Advances, 19, 261–278.

    Article  CAS  Google Scholar 

  13. Good, W. A., & Paul, A. H. (1970). Journal of Bacteriology, 104(1), 601–603.

    CAS  Google Scholar 

  14. Gimenez, M. I., Studdert, C. A., Sanchez, J., & De Castro, R. (2000). Extremophiles, 4, 181–188.

    Article  CAS  Google Scholar 

  15. Gupta, A., Roy, I., Patel, R. K., Singh, S. P., Khare, S. K., & Gupta, M. N. (2005). Journal of Chromatography. A, 1075, 103–108.

    Article  CAS  Google Scholar 

  16. Herrera, S. K., Studdert, C., Sanchez, J., & De Castro, R. (1997). Journal of Basic Microbiology, 7, 313–322.

    Google Scholar 

  17. Herbert, R. A. (1992). Trends in Biotechnology, 10, 395–401.

    Article  CAS  Google Scholar 

  18. Igrashi, K., Hatada, Y., Hagihara, H., Saeki, K., Takaiwa, M., Uemura, T., et al. (1998). Applied and Environmental Microbiology, 64, 3282–3289.

    Google Scholar 

  19. Jogi, C., Joshi, R. H., Dodia, M. S., & Singh, S. P. (2005). Journal of Cell and TissueResearch, 5(2), 439–444.

    CAS  Google Scholar 

  20. Joshi, R. H., Dodia, M. S., & Singh, S. P. (2008). Biotechnology and Bioprocess Engineering, 13, 552–559.

    Article  CAS  Google Scholar 

  21. Karan, R., Singh, S. P., Kapoor, S. M., & Khare, S. K. (2010). New Biotechnology. doi:10.1016/j.nbt.2010.10.007.

  22. Kadziola, A., Sogaard, M., Svensson, B., & Haser, R. (1998). Journal of Molecular Biology, 278, 205–217.

    Article  CAS  Google Scholar 

  23. Lanyi, J. K. (1974). Bacteriological Reviews, 38, 272–290.

    CAS  Google Scholar 

  24. Nakamura, T., Syukunobe, Y., Sakarai, T., & Idota, T. (1993). Milchwissenschaft, 48, 11–14.

    CAS  Google Scholar 

  25. Marhuenda-Egea, F., & Bonete, M. J. (2002). Current Opinion in Biotechnology, 13, 385–389.

    Article  CAS  Google Scholar 

  26. Madern, D., Ebel, C., & Zaccai, G. (2000). Extremophiles, 4, 91–98.

    Article  CAS  Google Scholar 

  27. Mehta, V. J., Thumar, J. T., & Singh, S. P. (2006). Bioresource Technology, 97, 1650–1654.

    Article  CAS  Google Scholar 

  28. Mijts, B. N., & Patel, B. K. C. (2001). Extremophiles, 5, 61–69.

    Article  CAS  Google Scholar 

  29. Madigan, M. T., & Marrs, B. L. (1997). Scientific American, 276(4), 66–71.

    Article  Google Scholar 

  30. Mevarech, M., Frolow, F., & Gloss, L. M. (2000). Biophysical Chemistry, 86, 155–164.

    Article  CAS  Google Scholar 

  31. Martınez-Espinosa, R. M., Lledoo, B., Frutos Marhuenda-Egea, C., Dıaz, S., & Marıa Jose, B. (2009). Extremophiles, 13, 785–792.

    Article  Google Scholar 

  32. Machius, M., Wiegand, G., & Huber, R. (1995). Journal of Molecular Biology, 246, 545–559.

    Article  CAS  Google Scholar 

  33. Ogino, H., & Ishikawa, H. (2001). Journal of Bioscience and Bioengineering, 91, 109–116.

    CAS  Google Scholar 

  34. Patel, R. K., Dodia, M. S., & Singh, S. P. (2005). Process Biochemistry, 40, 3569–3575.

    Article  CAS  Google Scholar 

  35. Patel, R. K., Dodia, M. S., Joshi, R. H., & Singh, S. P. (2006). World Journal of Microbiology and Biotechnology, 22(4), 375–382.

    Article  CAS  Google Scholar 

  36. Ru, M. T., Dordick, J. S., Reimer, J. A., & Clark, D. S. (1999). Biotechnology and Bioengineering, 63(2), 233–241.

    Article  CAS  Google Scholar 

  37. Studdert, C. A., Seitz, M. K. H., Gilv, M. I. P., Sanchez, J. J., & De Castro, R. (2001). Journal of Basic Microbiology, 41, 375–383.

    Article  CAS  Google Scholar 

  38. Saraiva, J., Oliveira J., Hendrickx, M. (1996). Lebensmittel-Wissenschaft und-Technologie, 29, 310–315.

    Google Scholar 

  39. Tadamasa, F., Toru, M., Akinobu, E., Akira, I., & Usami, R. (2005). Extremophiles, 9, 85–89.

    Article  Google Scholar 

  40. Thumar, J. T., & Singh, S. P. (2009). Journal of Industrial Microbiology and Biotechnology, 36, 211–218.

    Article  CAS  Google Scholar 

  41. Thumar, J. T., & Singh, S. P. (2007). Journal of Chromatography B, 854, 198–203.

    Article  CAS  Google Scholar 

  42. Vihinen, M., Peltonen, T., Iitia, A., Suominen, I., & Mantsala, P. (1994). Protein Engineering, 7, 1255–1259.

    Article  CAS  Google Scholar 

  43. Upadek, H., & Kottwitz, B. (1997). Surfactant science series (pp. 203–212). New York: Marcel Dekker.

    Google Scholar 

  44. Wejse, P. L., Ingvorsen, K., & Mortensen, K. K. (2003). Extremophiles, 7, 423–431.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

Financial assistance from the University Grants Commission (New Delhi, India) and Saurashtra University, Rajkot (India) is acknowledged. Mr. Sandeep Pandey is grateful to the UGC, New Delhi for the Research Fellowship in Sciences for Meritorious Students.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. P. Singh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pandey, S., Singh, S.P. Organic Solvent Tolerance of an α-Amylase from Haloalkaliphilic Bacteria as a Function of pH, Temperature, and Salt Concentrations. Appl Biochem Biotechnol 166, 1747–1757 (2012). https://doi.org/10.1007/s12010-012-9580-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-012-9580-4

Keywords

Navigation