Skip to main content
Log in

Effects of Sludge Concentrations and Different Sponge Configurations on the Performance of a Sponge-Submerged Membrane Bioreactor

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The performance of a novel sponge-submerged membrane bioreactor (SSMBR) was evaluated to treat primary treated sewage effluent at three different activated sludge concentrations. Polyurethane sponge cubes with size of 1 × 1 × 1 cm were used as attached growth media in the bioreactor. The results indicated the successful removal of organic carbon and phosphorous with the efficiency higher than 98% at all conditions. Acclimatised sponge MBR showed about 5% better ammonia nitrogen removal at 5 and 10 g/L sludge concentration as compared to the new sponge system. The respiration test revealed that the specific oxygen uptake rate was around 1.0–3.5 mgO2/gVSS.h and likely more stable at 10 g/L sludge concentration. The sludge volume index of less than 100 mL/g during the operation indicated the good settling property of the sludge. The low mixed liquor suspended solid increase indicated that SSMBR could control the sludge production. This SSMBR was also successful in reducing membrane fouling with significant lower transmembrane pressure (e.g. only 0.5 kPa/day) compared to the conventional MBR system. Further study will be conducted to optimise other operating conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Yang, W., Cicek, N., & Ilg, J. (2006). Journal of Membrane Science, 270, 201–211.

    Article  CAS  Google Scholar 

  2. Kocadagistan, B., Kocadagistan, E., Topcu, N., & Demircioglu, N. (2005). Process Biochemistry, 40, 177–182.

    Article  CAS  Google Scholar 

  3. Ren, X. H., Shon, H. K., Jang, N. J., Lee, Y. G., Bae, M. S., Lee, J. H., et al. (2010). Water Research, 44, 751–760.

    Article  CAS  Google Scholar 

  4. Rahimi, Y., Torabian, A., Mehrdadi, N., Habibi-Rezaie, M., Pezeshk, H., & Bidhendi, G. R. N. (2011). Journal of Hazardous Material, 86, 1097–1102.

    Article  Google Scholar 

  5. Sombatsompop, K., Visvanathan, C., & Ben Aim, R. (2006). Desalination, 201, 138–149.

    Article  CAS  Google Scholar 

  6. Lee, J. M., Ahn, W. Y., & Lee, C. H. (2001). Water Research, 35, 2435–2445.

    Article  CAS  Google Scholar 

  7. Lee, W., Kang, S., & Shin, H. (2003). Journal of Membrane Science, 216, 217–227.

    Article  CAS  Google Scholar 

  8. APHA., AWWA., WEF. (1998). Standard Methods for the examination of Water and Wastewater, 20th edition, American Public Health Association.

  9. Khan, S. J., Ilyas, S., Javid, S., Visvanathan, C., & Jegatheesan, V. (2011). Bioresource Technology, 102, 5331–5336.

    Article  Google Scholar 

  10. Ngo, H. H., Guo, W. S., & Xing, W. (2008). Bioresource Technology, 99, 2429–2435.

    Article  CAS  Google Scholar 

  11. Guo, W. S., Ngo, H. H., Palmer, C. G., Xing, W., Hu, A. Y. J., & Listowski, A. (2009). Desalination, 249, 672–676.

    Article  CAS  Google Scholar 

  12. Lobos, J., Wisniewski, C., Heran, M., & Grasmick, A. (2008). Journal of Membrane Science, 317, 71–77.

    Article  CAS  Google Scholar 

  13. Ye, F., Ye, Y., & Li, Y. (2011). Journal of Hazardous Materials, 188, 37–43.

    Article  CAS  Google Scholar 

  14. Jin, B., Wilén, B. M., & Lant, P. (2003). Chemical Engineering Journal, 95, 221–234.

    Article  CAS  Google Scholar 

  15. Guo, J. H., Peng, Y. Z., Peng, C. Y., Wang, S. Y., Chen, Y., Huang, H. J., et al. (2010). Bioresource Technology, 101, 1120–1126.

    Article  CAS  Google Scholar 

  16. Her, N., Amy, G., Park, H. R., & Song, M. (2004). Water Research, 38, 1427–1438.

    Article  CAS  Google Scholar 

  17. Nataraj, S., Schomäcker, R., Kraume, M., Mishra, I. M., & Drews, A. (2008). Journal of Membrane Science, 308, 152–161.

    Article  CAS  Google Scholar 

  18. Liu, F., Xu, Y. Y., Zhu, B. K., Zhang, F., & Zhu, L. P. (2009). Journal of Membrane Science, 345, 331–339.

    Article  CAS  Google Scholar 

  19. James, K. E., William, C. B., & Kevin, L. W. (1985). Journal of American Water Works Association, 77, 122.

    Google Scholar 

  20. Kalbitz, K. S., Geyer, S. B., & Geyer, W. (2000). Chemosphere, 40, 1305.

    Article  CAS  Google Scholar 

  21. Nguyen, T. T., Guo, W. S., Ngo, H. H., & Vigneswaran, S. (2010). Separation and Purification Technology, 75, 204–209.

    Article  CAS  Google Scholar 

  22. Yang, S., Yang, F., Fu, Z., & Lei, R. (2009). Bioresource Technology, 100, 6655–6657.

    Article  CAS  Google Scholar 

  23. Le-Clech, P., Chen, V., & Fane, T. (2006). Journal of Membrane Science, 284, 17–53.

    Article  CAS  Google Scholar 

  24. Kim, M., & Nakhla, G. (2009). Journal of Membrane Science, 331, 91–99.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was funded by the Australian Research Council (ARC) Industry Linkage Grant (LP0882089). The authors are also grateful for the support of UTS Chancellor’s Postdoctoral Research Fellowship and UTS Early Career Researcher Grants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huu Hao Ngo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nguyen, T.T., Ngo, H.H., Guo, W. et al. Effects of Sludge Concentrations and Different Sponge Configurations on the Performance of a Sponge-Submerged Membrane Bioreactor. Appl Biochem Biotechnol 167, 1678–1687 (2012). https://doi.org/10.1007/s12010-012-9579-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-012-9579-x

Keywords

Navigation