Skip to main content
Log in

Degradation of Triclosan under Aerobic, Anoxic, and Anaerobic Conditions

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Triclosan (2, 4, 4′-trichloro-2′-hydroxyl diphenyl ether) is a broad-spectrum antimicrobial agent present in a number of house hold consumables. Aerobic and anaerobic enrichment cultures tolerating triclosan were developed and 77 bacterial strains tolerating triclosan at different levels were isolated from different inoculum sources. Biodegradation of triclosan under aerobic, anoxic (denitrifying and sulphate reducing conditions), and anaerobic conditions was studied in batch cultures with isolated pure strains and enrichment consortium developed. Under aerobic conditions, the isolated strains tolerated triclosan up to 1 g/L and degraded the compound in inorganic-mineral-broth and agar media. At 10 mg/L level triclosan, 95 ± 1.2% was degraded in 5 days, producing phenol, catechol and 2, 4-dichlorophenol as the degradation products. The strains were able to metabolize triclosan and its degradation products in the presence of monooxygenase inhibitor 1-pentyne. Under anoxic/anaerobic conditions highest degradation (87%) was observed in methanogenic system with acetate as co-substrate and phenol, catechol, and 2, 4-dichlorophenol were among the products. Three of the isolated strains tolerating 1 g/L triclosan were identified as Pseudomonas sp. (BDC 1, 2, and 3).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Singer, H., Muller, S., Tixier, C., & Pillonel, L. (2002). Environmental Science and Technology, 36, 4998–5004.

    Article  CAS  Google Scholar 

  2. US Environmental Protection Agency (2003) Region/ORD workshop on emerging pollutants-Summary report available from: http://www.epa.gov/osp/regions/emerpoll_rep.pdf.

  3. Mezcua, M., Gomez, M. J., Ferrer, I., Aguera, A., Hernando, M. D., & Fernandez-Alba, A. R. (2004). Analytica Chimica Acta, 524, 241–247.

    Article  CAS  Google Scholar 

  4. Sanford, J. C., Aminov, R. I., Krapac, I. J., Jeanjean, N. G., & Mackie, R. I. (2001). Applied and Environmental Microbiology, 67, 1494–1502.

    Article  Google Scholar 

  5. Orvos, D. R., Versteeg, D. J., Inauen, J., Capdevielle, M., Rothenstein, A., & Unningham, V. C. (2002). Environmental Toxicology and Chemistry, 21, 1338–1349.

    Article  CAS  Google Scholar 

  6. Balmer, M. E., Droz, T. P., Romanin, C. K., Bergqvist, P. A., Muller, M. D., & Buser, H. R. (2004). Environmental Science and Technology, 38, 390–395.

    Article  CAS  Google Scholar 

  7. Liu, F., Ying, G. G., Yang, L. H., & Zhou, Q. X. (2009). Ecotoxicology and Environmental Safety, 72, 86–92.

    Article  CAS  Google Scholar 

  8. Bester, K. (2003). Water Research, 16, 3891–3896.

    Article  Google Scholar 

  9. Stasinakis, A. S., Gatidou, G., Mamais, D., Thomaidis, N. S., & Lekkas, T. D. (2008). Water Research, 42, 1796.

    Article  CAS  Google Scholar 

  10. Heidler, J., & Halden, R. U. (2007). Chemosphere, 66, 362–369.

    Article  CAS  Google Scholar 

  11. Winkler, G., Thompson, A., Fischer, R., Krebs, P., Griffin, P., & Cartmell, E. (2007). Engineering Life Science, 7, 42–51.

    Article  CAS  Google Scholar 

  12. Wu, C., Spongberg, A. L., & Witter, J. D. (2009). Journal of Agricultural and Food Chemistry, 57, 4900.

    Article  CAS  Google Scholar 

  13. Ying, G. G., Yu, X. Y., & Kookana, R. S. (2007). Environmental Pollution, 150, 300–305.

    Article  CAS  Google Scholar 

  14. Meade, M. J., Waddell, R. L., & Callahan, T. M. (2001). FEMS Microbiology Letters, 204, 45–48.

    Article  CAS  Google Scholar 

  15. Roh, H., Subramanya, N., Zhao, F., Yu, C. P., Sandt, J., & Chu, K. H. (2009). Chemosphere, 77(8), 1084–1089.

    Article  CAS  Google Scholar 

  16. Hundt, K., Martin, D., Hammer, E., Jonas, U., Kindermann, M. K., & Schauer, F. (2000). Applied and Environmental Microbiology, 66, 4157–4160.

    Article  CAS  Google Scholar 

  17. Hay, A. G., Dees, P. M., & Sayler, G. S. (2001). FEMS Microbiology Ecology, 36, 105–112.

    Article  CAS  Google Scholar 

  18. Carr, D. L., Morse, A. N., Zak, J. C., & Anderson, T. A. (2011). Water Air and Soil Pollution, 216, 633–642.

    Article  CAS  Google Scholar 

  19. Siegmund, I., & Wagner, F. (1991). Biotechnology Techniques, 5, 265–268.

    Article  CAS  Google Scholar 

  20. Wilson, K., Ausubel, F. M., Brent, R., Kingston, R. E., Moore, D. D., Seidman, J. G., et al. (1987). Current Protocols in Mol. Biol (pp. 2.4.1–2.4.5). New York: Wiley.

    Google Scholar 

  21. Liaw, H. J., & Srinivasan, V. R. (1990). Journal of Industrial Microbiology, 6, 235–242.

    Article  CAS  Google Scholar 

  22. Schmidt, S., Wittich, R. M., Erdmann, D., Wilkes, H., Francke, W., & Fortnagel, P. (1992). Applied and Environmental Microbiology, 58, 2744–2750.

    CAS  Google Scholar 

  23. Kim, Y. J., & Nicell, J. A. (2006). Bioresource Technology, 97, 1431–1442.

    Article  CAS  Google Scholar 

  24. Kim, Y. M., Nam, I. H., Murugesan, K., Schmidt, S., Crowley, D. E., & Chang, Y. S. (2007). Applied Microbiology and Biotechnology, 77, 187–194.

    Article  CAS  Google Scholar 

  25. Canosa, P., Rodriguez, I., Rubí, E., & Cela, R. (2005). Journal of Chromatography. A, 1072, 107–115.

    Article  CAS  Google Scholar 

  26. Barkay, T., Navon-Venezia, S., Ron, E. Z., & Rosenberg, E. (1999). Applied and Environmental Microbiology, 65, 2697–2702.

    CAS  Google Scholar 

  27. Kim, Y. M., Murugesan, K., Schmidt, S., Bokare, V., Jeon, J. K., Kim, E. J., et al. (2011). Bioresource Technology, 102, 2206–2212.

    Article  CAS  Google Scholar 

  28. Yen, K. M., Karl, M. R., Blatt, L. M., Simon, M. J., Winter, R. B., Fausset, P. R., et al. (1991). Journal of Bacteriology, 173, 5315–5327.

    CAS  Google Scholar 

  29. Yeager, C. M., Bottomley, P. J., Arp, D. J., & Hyman, M. R. (1999). Applied and Environmental Microbiology, 65, 632–639.

    CAS  Google Scholar 

  30. Zhao, F. (2006). Zachry Department of Civil Engineering, Texas A&M University, College Station, Texas (http://hdl.handle.net/1969.1/5966).

  31. Ying, G. G., Kookana, R. S., & Dillon, P. (2003). Water Research, 37, 3785–3791.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial assistance from International Foundation for Science (IFS), Sweden (Ref. no. W/4218-1) and infrastructural facilities from CSIR-India for conducting the present study is greatly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krishnakumar Bhaskaran.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gangadharan Puthiya Veetil, P., Vijaya Nadaraja, A., Bhasi, A. et al. Degradation of Triclosan under Aerobic, Anoxic, and Anaerobic Conditions. Appl Biochem Biotechnol 167, 1603–1612 (2012). https://doi.org/10.1007/s12010-012-9573-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-012-9573-3

Keywords

Navigation